60484100

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1

GUIDE FOR USERS

OF FORTRAN VERSION 5

CDC®OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION RECORD

Revision Description
A (05/16/80) Original release documenting CYBER Interactive Debug Version 1 and FORTRAN Version 5 at

PSR level 512,

B (05/25/84) Revised at PSR level 512 to document support of the CYBER 170 800 Series models and the
CYBER 180 Computer Systems.

C (09/10/84) Revised at PSR level 626 to incorporate the following changes: state default options for
interactive jobs; remove references to Time Limit; define maximum length of command line;
explain function of underscore.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. BOX 3492

© COPYRIGHT CONTROL DATA CORPORATION 1980, 1984 SUNNYVALE, CALIFORNIA 94088-3492
All Rights Reserved .

Printed in the United States of America or use Comment Sheet in the back of this manual

ii 60484100 C

LIST OF EFFECTIVE PAGES

10—

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover
Title Page

ii

iii/iv

v

vi

vii

viii

1-1

1-2

2-1 thru 2-5
3-1 thru 3-10
3-11

3-12 thru 3-23
3-24

3-25

3-26

3-27

3-28 thru 3-40
4-1

4-2 thru 4-23
-1 thru 5-4
-1

2
1
2
1 thru C-3
1 thru D-3
1

mOOWEWE>>Wu

E-2

Index-1

Index-2

Comment Sheet/Mailer
Back Cover

tapeErerreEErrPropabPapoREFPaoaa>OO0 |l

60484100 C iii/iv

PREFACE

This manual provides the FORTRAN programmer with
assistance in the debugging of FORTRAN Version 5
programs under the control of the CDC® CYBER
Interactive Debug Facility.

CYBER Interactive Debug (CID) operates under the
following operating systems:

NOS/BE 1 for the CONTROL DATA® CYBER 180
Series; CYBER 170 Series; CYBER 70 Models 71, 72,
73, 74; and 6000 Series Computer Systems.

NOS 1 for the CDC CYBER 180 Series; CYBER 170
Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems.

You should have a copy of the CYBER Interactive Debug
reference manual available for reference, but you need not
be familiar with the manual. In addition, you should be
familiar with FORTRAN 5 and should be able to run jobs
interactively under either NOS/BE INTERCOM or the NOS
Interactive Facility.

This guide provides a tutorial approach to CID beginning
with basic features and proceeding through more advanced
features. Section 1 provides some background information
and presents a summary of the features of CID. Section 2
describes the method for initiating a debug session with
CID, and describes several useful CID commands; this
section contains sufficient information to allow the casual
user to make productive use of CID. Sections 3 through 5
describe features which are helpful in debugging more
complex programs. This guide is not comprehensive in its
approach to CID; only those features considered useful to
FORTRAN programmers are described. Most of the
features described in this manual are illustrated by actual
examples of debug sessions. This is intended to help you
become familiar with CID notational conventions and with
information produced by CID.

The Software Publications Release History serves as a
guide in determining which revision level of software
documentation corresponds to the Programming System
Report (PSR) level of installed site software.

Additional information can be found in the listed
publications.

The following publications are of primary interest:

Publication

CYBER Interactive Debug Version 1 Guide for
User's of FORTRAN Version 5 Online

CYBER Interactive Debug Version 1

Reference Manual

CVYBER Interactive Debug Version 1

Reference Manual Online

FORTRAN Version 5
Reference Manual

FORTRAN Version 5
Reference Manual Online

Publication
Number
1.60484100
60481400
160481400

60481300

L60481300

The following publications are of secondary interest:

Publication

CYBER Loader Version 1
Reference Manual

INTERCOM Version 5 Reference Manual

NOS Version 1 Manual Abstracts

NOS/BE Version 1 Manual Abstracts

Network Products Interactive Facility

Version 1 Reference Manual

60484100 C

Publication
Number

60429800

60455010
84000420
84000470

60455250

vi

Publication
Publication Number

Network Products
Interactive Facility Version 1

User's Guide 60455260
Software Publications Release History 60481000
XEDIT Version 3 Reference Manual 60455730

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This manual describes a subset of the features and
parameters documented in the CYBER Interactive
Debug Version 1 Reference Manual and the FORTRAN
Version 5 Reference Manual. Control Data cannot be
responsible for the proper functioning of any features
or parameters not documented in the CYBER
Interactive Debug Version 1 Reference Manual.

60484100 A

CONTENTS

15—

1. INTRODUCTION

What is Interactive Debugging?

Special CID Features for FORTRAN Programs

Why Use CID?

Programming for Ease of Debugging

What Effect Does CID Have on Program Size and
Execution Time?

Overlay Debugging

Batch Mode Debugging

2. GETTING STARTED

Entering the CID Environment
DEBUG Control Statement
Executing Under CID Control
Entering CID Commands
Shorthand Notation for CID Commands

Referencing Source Statements
Line Number Specification
Statement Label Specification

Some Essential Commands
GO
QUIT
PRINT
SET , BREAKPOINT
HELP

Summary

Sample Debug Session

3. ADVANCED DEBUGGING TECHNIQUES

Home Program
Referencing Locations Outside the Home Program
Qualification Notation
SET,HOME Command
Debugging Aids for Programs With Multiple
Program Units
#HOME Debug Variable
TRACEBACK Command
Error and Warning Processing
Error Messages
Warning Messages
Traps and Breakpoints
Suspending Execution With Breakpoints
Frequency Parameters
Displaying a List of Breakpoints
Removing Breakpoints
Suspending Execution With Traps
Trap Usage
Default Traps
END Trap
ABORT Trap
JINTERRUPT Trap
User-Established Traps
SET ,TRAP Command
LINE Trap
STORE Trap
Displaying a List of Traps
Removing Traps
Interpret Mode
Summary of Trap and Breakpoint Characteristics
Displaying Program Variables
Recognizing Erroneous Values

60484100 C

2-1

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5

3-1
3-2
3-2
3-2

3-3
3-3

- 3-4

3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-9
3-9
3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-12
3-14
3-14
3-15
3-16
3-16
3-16

LIST,VALUES Command
PRINT Command
DISPLAY Command
Altering Program Values
Assignment Command
MOVE Command
Displaying CID and Program Status Information
Debug Variables
LIST Commands
LIST ,MAP Command
LIST,STATUS Command
Control of CID Output
Types of Output
SET,OUTPUT Command
SET,AUXILIARY Command
Interactive Input
Debugging Examples
Sample Program CORR
Sample Program NEWT

4., AUTOMATIC EXECUTION OF CID COMMANDS

Command Sequences
Collect Mode
Multiple Command Entry
Sequence Commands
Traps and Breakpoints With Bodies
Displaying Trap and Breakpoint Bodies
Groups
Error processing During Sequence Execution
Receiving Control During Sequence Execution
PAUSE Command
GO and EXECUTE Commands
Conditional Execution of CID Commands
IF Command
JUMP and LABEL Commands
Command Files
Saving Trap, Breakpoint, and Group Definitions
Editing a Command Sequence
Suspending a Debug Session
Editing Procedure
Interrupting an Executing Sequence
Command Sequence Examples
Program CORR
Program NEWT

5. DEBUGGING IN AN OVERLAY ENVIRONMENT

Summary of Overlay Processing
Qualification

Referencing Locations in Unloaded Overlays
OVERLAY Trap

Command Forms for Overlay Debugging
Overlay Example

APPENDIXES

A Standard Character Sets
B Glossary

C Arithmetic Errors

D Batch Mode Debugging

E Summary of CID Commands

3-17
3-17
3-18
3-20
3-20
3-21
3-24
3-24
3-24
3-25
3-26
3-26
3-27
3-27
3-28
3-30
3-30
3-30
3-36

4-1
4-1
4-1
4-1
4-1
4-2
44

4-5

4-8

4-8

4-10
4-10
4-12
4-14
4-14
4-15
4-15
4-18
4-18
4-20
4-20
4-21

5-1
5-2
5-2
5-2
5-3
5~3

A-1
B-1
Cc-1
D-1
E-1

vii

INDEX

FIGURES

2-1 Initiating a Debug Session

2-2 Example of HELP Command

2-3 Program ATRl and Debug Session

3-1 Main Program and Subroutine Illustrating
Local Variables

3-2 Debug Session Illustrating Home Program
Concept

3-3 Debug Session Illustrating SET,HOME
Command

3-4 Program and Debug Session Illustrating
TRACEBACK Command

3-5 Debug Session Illustrating Error
Messages

3-6 Debug Session Illustrating Warning
Messages

3-7 Program RDTR, Subroutine AREA, and Input
Data

3-8 Debug Session Illustrating
SET ,BREAKPOINT Command

3-9 Debug Session Illustrating
LIST ,BREAKPOINT Command

3-10 Program ERR and Debug Session
Illustrating ABORT Trap

3-11 Subroutine SETB and Main Program

3-12 Debug Session Illustrating LINE Trap

3-13 Debug Session Illustrating STORE Trap

3-14 Debug Session Illustrating LIST,TRAP
Command

3-15 Debug Session Illustrating CLEAR,TRAP
Command

3-16 Debug Session Illustrating SET,INTERPRET
Command

3-17 Program TYPES and Subroutine ADDC

3-18 Debug Session Illustrating LIST,VALUES
Command

3-19 Debug Session Illustrating PRINT Command

3-20 Program PAK and Debug Session
I1llustrating DISPLAY Command

3-21 Program AVG and Debug Session
Illustrating Assignment Command

3-22 Program MOVDAT and Debug Session
Illustrating MOVE Command

3-23 Debug Session Illustrating Debug
Variables

3-24 Program ABLE and Debug Session
Illustrating LIST,MAP Command

3-25 Debug Session Illustrating LIST,STATUS
Command

3-26 Debug Session Illustrating SET,AUXILIARY,
SET,OUTPUT, and CLEAR,OUTPUT Commands

3-27 Listing of Auxiliary File AFILE

3-28 Program ATR and Debug Session
Illustrating Interactive Input Under
NOSs

3-29 Program ATR and Debug Session
Illustrating Interactive Input Under.
NOS/BE

3-30 Program CORR Before Debugging

viii

3-7
3-8
3-8
3-10
3-12
3-13
3-14
3-14
3-15

3-16
3-17

3-18
3-19

3-21
3-22

3-23

3-25

3-26
3-27
3-29
3-29

3-30

3-31
3-31

Input Data for First Test Case and Debug

Session 3-32
3-32 Second Debug Session 3-32
3-33 Third Debug Session 3-33
3-34 Fourth Debug Session 3-34
3-35 Input Data for Second Test Case and

Debug Session 3-35
3-36 Input Data for Third Test Case and Debug

Session 3-36
3-37 1Input Data for Fourth Test Case and

Debug Session 3-36
3-38 Program CORR With Corrections 3-37
3-39 Subroutine NEWT and Main Program Before

Debugging 3-38
3-40 Debug Session for Subroutine NEWT 3-39
3-41 Subroutine NEWT and Main Program With

Corrections 3-40
4-1 Debug Session Illustrating Breakpoint

With Body 4-3
4-2 Debug Session Illustrating

LIST,BREAKPOINT Command for Breakpoint

With Body 4-3
4-3 Debug Session Illustrating Group

Execution Initiated at Terminal 4-5
4-4 Debug Session Illustrating Group

Execution Initiated From Breakpoint

Body 4-6
4-5 Program MATOP and Debug Session 4-7
4-6 Second Debug Session for Program MATOP 4-9
4~7 Debug Session Illustrating Error

Processing During Sequence Execution 4~10
4-8 Debug Session Illustrating PAUSE Command 4-11
4-9 Program EX and Debug Session

Illustrating GO Command 4-12
4-10 Debug Session Illustrating JUMP and

LABEL Commands 4~13
4-11 Debug Sessions Illustrating SAVE Command 4-16
4-12 Listing of File AFILE 4-17
4-13 Debug Session Illustrating READ and

SAVE ,GROUP Commands 4-17
4-14 Editing a Command Sequence Under NOS/BE 4-19
4-15 Editing a Command Sequence Under NOS 4-20
4-16 Command Files for Program CORR 4-21
4-17 List of File BPFILE 4-21
4-18 Debug Session Using Command Sequence for

Debugging Program CORR 4-22
4-19 Debug Session Using Command Sequence for

Debugging Subroutine NEWT 4-23
5-1 Sample Overlay Program 5-1
5-2 Debug Session for Overlay Program 5-4
TABLES
3-1 CID Notation 3-3
3-2 Trap Types 3-9
3-3 Display Commands 3-17
3-4 Debug Variables 3-24
3-5 LIST Commands 3-25
3-6 CID Output Types 3-27
4-1 Sequence Commands 4-2
5-1 Command Forms for Overlay Programs 5-3

60484100 C

INTRODUCTION 1

D]

The CYBER Interactive Debug facility (CID) allows the
FORTRAN programmer to interactively debug an
executing object program. CID can be used with
FORTRAN 5 programs compiled under the NOS or NOS/BE
-operating systems.

Use of CID requires a mode of execution called debug
mode. Debug mode is established by a control statement.
As long as debug mode is in effect, execution of all user
programs takes place under control of CID. CID, in turn,
allows you to enter commands that perform the following
operations:

e Suspend program execution at specified locations.

e Suspend program execution on the occurrence of
selected conditions, such as modification of a variable.

e Display the values of variables, arrays, and common
blocks while execution is suspended.

e Change the values of variables, arrays, or common
blocks within the program while execution is
suspended.

e Resume program execution at the location where it
was suspended, or at another location.

WHAT IS INTERACTIVE
DEBUGGING?

Interactive debugging means that you debug your program
while it is executing. In interactive mode, CID allows you
to suspend execution of your program and enter commands
directly from a terminal while execution is suspended. CID
executes each command immediately after it is entered.
Program execution remains suspended until resumed by the
appropriate command. In this manner, you can control and
monitor the execution of your program, stopping at desired
points to examine and modify the values of program
variables.

SPECIAL CID FEATURES
FOR FORTRAN PROGRAMS

CID provides certain features currently available only to
FORTRAN 5 programs compiled in debug mode. These
features include commands with a FORTRAN-like syntax
and the capability of symbolically referencing locations
within an object program. The commands available only in
debug mode are indicated in appendix E. .

For purposes of this user's guide, it is assumed that
FORTRAN programs to be executed under CID control are
compiled in debug mode; therefore, in the discussions of
the CID capabilities, no distinction is made between
standard CID features and the special features available to
FORTRAN programs. It is possible, though more difficult,
to use CID with programs not compiled in debug mode.
Refer to the CYBER Interactive Debug reference manual
for a description of this capability.

60484100 A

WHY USE CID?

Conventional debugging techniques often require the use of
load maps, object listings, and octal dumps. In addition, it
is often necessary to recompile a FORTRAN program
several times to make corrections or to add statements
that print intermediate values of program variables. These
debugging techniques can be expensive in terms of both
machine time and programmer time.

CID, however, does not require a knowledge of assembly
language or the ability to interpret memory dumps. You
can completely debug a program with CID by referring only
to a source listing and by referencing variables and line
numbers symbolically. In many cases, a FORTRAN
program need be compiled only once; the resulting object
program can be executed repeatedly with different CID
commands specified for each run. Since CID allows you to
make changes to your program's data and flow of control as
execution proceeds, you can often accomplish, in a single
session, debugging that would normally require several
compilations. Thus, considerable time can be saved,
especially when you are debugging programs that are
time-consuming to compile or execute.

A disadvantage of CID is that OPT=0 compilation mode is
required if the special FORTRAN commands and symbolic
capabilities are to be used. Since a program that executes
correctly when compiled with OPT=0 might not do so when
compiled in a higher mode of optimization, a program
debugged with OPT=0 should also be tested with OPT=1 or
OPT=2. If the program does not execute correctly in a
higher mode of optimization, you must either use
conventional debugging techniques or use CID without the
symbolic referencing capabilities.

PROGRAMMING FOR EASE OF
DEBUGGING

When coding a FORTRAN program, there are certain
guidelines you can follow to make debugging easier. ‘An
important consideration is program modularity. Simply
stated, program modularity means limiting the size of
program units and dividing programs into subprograms that
perform logical functions. A modular program is easier to
understand, easier to modify, and easier to debug.

CID lends itself to use with a modular program. Through
CID, you can gain control on entry into and on exit from a
subprogram. You can use CID to display values passed to a
subprogram, intermediate values used in computations
within the subprogram, and values output from the
subprogram. By specifying special parameters on CID
commands, you can restrict the scope of the commands to
particular program units.

Using a style of coding that avoids GO TOs and minimizes
branches can be an aid in the debugging process. A
program that contains a minimum of branches and flows
logically from top to bottom is much easier to understand

than one that contains many unnecessary branches. The
block IF structures of FORTRAN 5 facilitate a structured
style of programming, and should be used wherever possible
to simplify program flow. CID provides features that allow
you to trace the flow of control of your executing program;
this process is much easier if the program avoids needlessly
complex logic.

You should avoid programming tricks and shortcuts,
particularly if they depend on system idiosyncracies. For
example, although some systems initialize memory to zero,
it is best to include statements in your program which
perform all appropriate initialization.

CID should not be considered a substitute for proper
programming practices. Even though CID offers many
powerful features, a well-written program is much easier
to debug.

Program carefully and try to minimize the number of
errors. Performing a careful visual scan of the program
before execution can reveal many of the more obvious
errors. Use other debugging aids, such as the FORTRAN
cross reference listing and Post Mortem Dump. It is better
to have correct code to begin with than to spend time
debugging.

WHAT EFFECT DOES CID
HAVE ON PROGRAM SIZE AND
EXECUTION TIME?

If the special FORTRAN features are to be used in a debug
session, the program must be compiled in debug mode.
This requires OPT=0 compilation mode. OPT=0
compilation generates unoptimized object code, generally

1-2

resulting in faster compilation, but slower execution. The
minimum field length requirement for a program compiled
in OPT=0 mode is 40000g words. In addition, compiling
in debug mode generates additional code for use by CID.

The CID module, which is loaded into the user's field
length, increases the memory requirement by
approximately 4000 words; the minimum field length
requirement is 53000 words. Programs that become
excessively large should be modularized, and the modules
debugged separately.

Certain CID features require a mode of execution called
interpret mode (described in section 3) which requires
much more execution time than normal execution. This
can be a significant problem in some programs. In most
cases, however, you can substitute an alternate feature
that does not require interpret mode.

OVERLAY DEBUGGING

CID can be used with programs containing overlays. CID
provides features intended specifically for the debugging of
programs with overlays, including a special trap that allows
you to suspend program execution when an overlay is
loaded. Overlay debugging is described in section 5.

CID cannot be used with programs loaded by either
SEGLOAD or the user-call loader.

BATCH MODE DEBUGGING

Although CID is intended to be used interactively, it can be
used in batch mode. Batch mode debugging is described in
appendix D.

60484100 A

GETTING STARTED

—

This section summarizes the operations necessary for
conducting a debug session and introduces several CYBER
Interactive Debug (CID) notation conventions. At the end
of the section, several basic commands are presented and
used in a sample session. These commands enable you to
conduct a simple but useful debug session.

ENTERING THE CID ENVIRONMENT

To execute a program under CID control (and to make use
of the FORTRAN capabilities), you must compile and
execute the program in debug mode. Debug mode is turned
on by a system control statement.

DEBUG CONTROL STATEMENT

The DEBUG control statement activates debug mode. The
format of this statement is:

DEBUG
or :
DEBUG(ON)

When a FORTRAN program is compiled in debug mode,
special symbol tables for use by CID are generated as part
of the object code. When the program is subsequently
executed in debug mode, all of the CID features can be
used. Note that a program that has not been compiled in
debug mode can still be executed in debug mode, but
program locations cannot be referenced symbolically.
(This precludes the use of same of the features described in
section 3.)

When debug mode is on, you can interact with the operating
system and perform all other terminal activities in a
normal manner; only FORTRAN compilations and
relocatable loads are affected.

If you are using the FORTRAN subsystem (NOS) or the
INTERCOM EDITOR (NOS/BE), you can compile and
execute in debug mode by specifying the DEBUG control
statement before entering the RUN command.

The statement to deactivate debug mode is:
DEBUG(OFF)

When debug mode is off, programs that were compiled in
debug mode execute normally. It is necessary to enter this
statement only if you do not wish subsequent compilations
or executions to occur under CID control. .

EXECUTING UNDER CID CONTROL

A debug session consists of the sequence of interactions
between you and CID which takes place while your object
program is executing in debug mode. The session begins
when you initiate execution of your object program and
ends when you enter the QUIT command.

60484100 A

If you are executing under the NOS/BE EDITOR or the NOS
FORTRAN subsystem, you can begin the session by issuing
the appropriate RUN command, since this command
automatically initiates program execution after
compilation is complete. If you are compiling with an
FTN5 control statement, the session is initiated by
specifying the GO parameter or by entering the name of
the binary object file (default name is LGO) after the
compilation has completed. The system loads the CID
program module, your binary program, and system and
library modules. Control then transfers to an entry point
in CID. CID then issues the message:

CYBER INTERACTIVE DEBUG
?

The ? character is a prompt signifying that CID is waiting
for user input. At this point you can enter CID commands.

The examples in figure 2-1 show the statements necessary
for compiling a program and initiating a debug session,
under the NOS and NOS/BE operating systems.

Debugging a program can require more than one debug
session. If this is the case, you can terminate the current
session and initiate a new session. Note that once a
program has been compiled in debug mode, it is not
necessary to recompile in order to conduct another debug
session with the same program. You can initiate another
session merely by entering the binary file name (the normal
method of executing a program).

ENTERING CID COMMANDS

The CID prompt for user response is a question mark (?).
In response to the ? character, enter a CID command and
press the transmission key (RETURN on most terminals).
CID then processes the command, issues an informative
message indicating the disposition of the command or
displays any output that the command calls for, and issues
another ? prompt. CID continues to issue prompts after
processing commands until you enter the command to
resume execution of your program, or until you terminate
the session.

If you enter a command incorrectly, CID displays a
diagnostic message. One such message is:

ERROR- UNKNOWN COMMAND
If this message appears; determine the correct format, and
reenter the command. You can use the HELP command,

described later in this section for assistance with command
formats.

2-1

Example 1:

Enter edit mode.

COMMAND~- editor —=

Make PROGA the edit file.

..edit,proga,seq =

. .debug —=—

Turn on debug mode.

..run,ftn5 —-

57500 CM STORAGE USED.

CYBER INTERACTIVE DEBUG
?

Example 2:

COMMAND- debug—=e

0.064 CP SECONDS COMPILATION TIME.

Compile program and initiate debug session.

Turn on debug mode.

COMMAND- ftn5,i=proga,l=List ==

57500 CM STORAGE USED.

0.061 CP SECONDS COMPILATION TIME.

Compile program.

COMMAND- Lgo -

CYBER INTERACTIVE DEBUG

?

Example 3:

Initiate debug session.

/fortran —=

READY.
debug

OLD, NEW, OR LIB FILE: old,proga—e—————— Designate PROGA as primary file.

Enter FORTRAN subsystem.

READY.

Turn on debug mode.

run -

79/11/02. 08.30.28.
PROGRAM PROGA

~ CYBER INTERACTIVE DEBUG
?

Compile program and initiate debug session.

Figure 2-1. Inititating a Debug Session

SHORTHAND NOTATION FOR
CID COMMANDS

Most standard CID commands have a shorthand form that
permits you to omit the comma separator and to substitute
abbreviations for the command name and certain
parameters. For example, the command:

SET,TRAP,LINE,*
can be expressed as:
STL *

The shorthand notation provides a more convenient method
of specifying commands; you are encouraged to use this
form as you become more familiar with CID. However, for
purposes of clarity and consistency, only the full command
forms are used in this manual. The short command forms
are listed in appendix E.

REFERENCING SOURCE
STATEMENTS

Many of the CID command formats require you to indicate
a specific statement within the program you are debugging.
Source statements are referenced either by line sequence
number or by statement label by using the following
notation.

LINE NUMBER SPECIFICATION
The notation for specifying a sequence number is:
L.n
where n is the statement sequence number or the number

indicated on the compiler-generated source listing for
programs without sequence numbers. This notation denotes

60484100 A

the source line having the specified sequence number.
Leading zeros can be omitted. Some examples of sequence
number references are as follows:

L.130
L.l
L.26

STATEMENT LABEL SPECIFICATION

You can also reference a program statement by specifying
a statement label assigned to that statement in the source
program. A statement label specification has the form:

S.n

where n is the statement label. Only executable
statements can be referenced in this manner. For example:

S.10

designates the source statement having the label 10.

SOME ESSENTIAL COMMANDS

The following paragraphs describe several CID commands
that enable you to conduct simple debug sessions. These
are the GO command, the QUIT command, the PRINT
command, and the SET,BREAKPOINT command. The
HELP command, which provides a quick summary of
information about various CID subjects, is also described.
(These commands are described in greater detail in
section 3.) The command forms presented here allow you
to debug programs consisting of a single program unit
only. To debug programs containing multiple program units
(main program, subroutines, and function subprograms), you
must be familiar with the home program concept described
in section 3.

GO

The command to initiate or resume program execution is:
GO

If entered at the beginning of the debug session, this
command initiates program execution. If entered after
execution has been suspended, this command causes
execution to resume at the statement where it was
suspended.

Once execution of your program has been suspended, any
number of CID commands can be entered. Execution
remains suspended until you enter GO.
QuIT
The command to terminate a debug session is:

QUIT
In response to the QUIT command, CID displays the
following message under NOS/BE and the NOS batch

subsystem:

DEBUG TERMINATED

60484100 A

Under NOS FORTRAN subsystem:
SRU n.nnn UNTS
RUN COMPLETE

The QUIT command causes an exit from the current session
and a return to system command mode. Files accessed by
the FORTRAN program are closed. Note, however, that
debug mode remains on until DEBUG(OFF) is specified.
You can initiate another debug session for the same
program, without recompiling, by entering the binary file
name (as described under Initiating a Debug Session).

Traps, breakpoints, and other alterations to the object
program exist only for the duration of the debug session.
When the session is terminated, any changes made to the
program are lost, and the program reverts to its compiled
version. You can terminate a debug session any time you
have control (CID has issued a ? prompt). The object
program can then be executed normally, or it can be
executed again under CID control.

PRINT

CID provides several commands for displaying the values of
program variables. The simplest of these is the command:

PRINT*,list

where list is a list of program variables. This command has
the same format as the FORTRAN list-directed PRINT
statement. The list can contain expressions and implied DO
loops.

This command lists the values of the specified program
variables. Values are formatted according to type

declared, implicitly or explicitly, in the source program
(integer, real, logical, character, boolean, or complex).

Examples:
PRINT*,X1,X2,A+B
PRINT*,'V ALUES',B8(1),B8(2),B(3)
PRINT*, (ARR(I),1=1,10)

SET,BREAKPOINT

A breakpoint is a location within a program where
execution is to be suspended. The command to establish a
breakpoint has the form:

SET,BREAKPOINT,loc

where loc is a line number specification (L.n) or statement
label specification (S.n) as described under Referencing
Source Statements. When the specified statement is
reached in the flow of execution, control transfers to CID
which then allows you to enter CID commands. Typically,
commands are entered to examine the values of program
variables, and execution is resumed.

Examples:
SET,BREAKPOINT,L.14

Sets a breakpoint at line 14.

2-3

SET BREAKPOINT,S.50
Sets a breakpoint at the statement labeled 50.

You can establish breakpoints at any time in the debug
session when execution is suspended and CID has issued a ?
prompt.

A breakpoint can be established at any executable
statement. Only one breakpoint can be set at a single
statement; however, a breakpoint can be set at a location
where a trap occurs and both the trap and the breakpoint
are recognized. Breakpoints are always recognized first.

Establishing a breakpoint at a specified location does not
alter execution of the statement at that location. When a
breakpoint is encountered during execution, CID gains
control before the statement is executed. When execution
is resumed, execution begins with the statement at the
breakpoint location.

When a breakpoint is encountered, CID receives control and
issues the following message:

*B #in AT loc

where n is a breakpoint number assigned by CID, and loc is
the statement (S.n or L.n) where the breakpoint was set.
Breakpoints are assigned consecutive numbers in the order
they are established, beginning with 1.

HELP

CID provides a HELP command that displays a brief
summary of infarmation about specific CID subjects and
commands. You can issue the HELP command whenever
you need assistance with a particular aspect of CID.

Simply entering the command:

HELP

causes CID to display a list of subjects. To obtain
additional information about any subject in the list, enter:

HELP,subject

For example, the command HELP,ERROR displays a brief
description of error processing. ’

A useful form of the HELP command is HELP,CMDS which
displays a complete list of CID commands and a brief
explanation of each. You can obtain a more detailed
explanation of any CID command by entering:

HELP,command

where command is any CID command. The HEL.P command
does not provide the same level of detail as the CID
reference manual, however, and should not be considered a
substitute for the reference manual.

The HELP command is illustrated in figure 2-2, which

shows the entry of the command HELP,SET,BREAKPGINT
to display a summary of the command parameters.

SUMMARY

A significant characteristic of CID is that much of its
power exists in a few commands. It is not necessary to
have a complete knowledge of all the CID commands, to
take advantage of the most powerful features of CID.

Following is a step-by-step summary of information
presented in this section.

To use CID:

1. Type DEBUG to turn on debug mode.

2. Compile and load your program in a normal manner.
Control transfers to CID when execution begins. CID
displays a message at the terminal and waits for your
input.

3. Set breakpoints as desired.

To set a breakpoint at a line number or statement
label enter:

SET,BREAKPOINT,L.n
SET,BREAKPOINT,S.n

where n is a line number or statement label.
4. Enter GO to begin execution of your program.

CID executes your program in a normal manner, but
returns control to you when a breakpoint occurs.

? help,set,breakpoint

BREAKPOINT COMMAND 1IS.

EXECUTED.

SB - SET BREAKPOINT -~ ALLOWS YOU TO SET A BREAKPOINT AT A
SPECIFIC LOCATIONS IN USER'S PROGRAM. THE FORM OF THE SET

SB <LOCATION>,<FIRST>,<LAST>,<STEP>
WHERE <LOCATION> IS THE LOCATION IN YOUR PROGRAM AT WHICH
YOU WANT THE BREAKPOINT SET.
<FIRST>, <LAST> AND <STEP> ARE OPTIONAL AND ARE DEFAULTED TO
THE BREAKPOINT IS NOT HONORED
UNTIL <LOCATION> HAS BEEN HIT <FIRST> TIMES. BUT, IT WILL BE
HONORED WHEN <LOCATION> IS HIT THE <FIRST>TH TIME AND EACH
<STEP>TH TIME AFTER THAT AS LONG AS <LAST> IS NOT EXCEEDED.
IF YOU TERMINATE THE SB COMMAND WITH AN OPEN BRACKET [, THEN
ALL COMMANDS UP TO A CLOSE BRACKET 1 WILL BE COLLECTED SUCH
THAT WHEN THE BREAKPOINT IS HONORED, THOSE COMMANDS WILL BE

1, 131071 AND 1 RESPECTIVELY.

Figure 2-2. Example of HELP Command

2-4

60484100 A

5. At this point, you can display the values of program
variables with the statement:

PRINT*,variable list
To resume execution, enter GO.

6. Enter QUIT to terminate the session. Enter
DEBUG(OFF) to turn off debug mode.

Debug sessions can become complicated. Always try to
keep debug sessions short and simple. If necessary, correct
known bugs, recompile your program, and conduct
additional debug sessions.

SAMPLE DEBUG SESSION

The preceding commands are now used to conduct a simple
debug session. As you study the examples in this guide,

keep in mind that these examples are intended to illustrate
the various CID features; they are not intended to present
a suggested sequence of commands for debugging all
programs. The actual commands used in a given debug
session depend on the program in question and, often, on
the inclination of the programmer.

A FORTRAN program and a debug session log are
illustrated in figure 2-3. The program calculates the area
of a triangle given the coordinates of the endpoints of the
three sides. After the session is initiated, a breakpoint is
set at line 6. When line 6 is reached during execution, CID
obtains control, and prompts for user input. The PRINT
command is entered to display the intermediate values
used in the area calculation. Execution is then resumed,
and the program runs to completion. (The END trap, which
occurs on normal program termination, is described in
section 3.) The final result is displayed, and the session is
terminated.

PROGRAM ATR1

WNIIVNEEWN =

END

CYBER INTERACTIVE DEBUG

T4/74

PROGRAM ATR1

DATA X1,Y1,X2,Y2,x3,Y3 /0.0,0.0,0.0,2.0,2.0,0./
S1=SQRT ((X2-X1)**2 + (Y2-Y1)**2)
S2=SART((X3-X1)*%2 + (Y3-YT1)**2)

S3=SQART ((X3-X2)**2 + (Y3-Y2)*%2)
T=(S1+482+83)/2.0
A=SQRT(T*(T-S1)*(T-S2)*(T-53))

0PT=0

7set,breakpoint,l.6 =

290 -

Set breakpoint at line 6.

Initiate program execution.

*B #1, AT L.6--=

Execution suspended at line 6.

?2print*,s1,s2,s3 -=

2. 2. 2.828427124746

Display values of intermediate variables.

Resume execution.

790 -

‘*T #17, END IN L.8 ==

?
END ATR1 ;
12400 MAXIMUM EXECUTION FL.

.168 CP SECONDS EXECUTION TIME.

Trap message signifies program has terminated.

}— FORTRAN messages.

Display final result.

print*, q ———

2.

2quit -

DEBUG TERMINATED

Terminate debug session.

Figure 2-3. Program ATR1 and Debug Session

60484100 A

2-5

ADVANCED DEBUGGING TECHNIQUES 3

Once you have compiled your FORTRAN program in debug
mode and initiated a debug session you are ready to begin
interactive debugging. Program execution under CYBER
Interactive Debug (CID) control involves an interaction
between you and CID; you specify conditions for which
program execution is to be suspended, and CID gives
control to you when these conditions are satisfied and
allows you to enter various CID commands to examine and
alter the status of the program.

The preceding section presented some elementary
commands that can be used to conduct a simple debug
session. This section begins with a discussion of the home
program, a concept you should be familiar with in order to
debug programs containing subroutines. Following this
discussion is additional information on the commands
presented in section 2 and descriptions of some other
commands and CID features that allow you to make more
productive use of CID. The commands discussed in this
section enable you to:

® Suspend program execution; commands are

SET,BREAKPOINT and SET,TRAP.

e Display the current values of program variables and
arrays at the terminal while execution is suspended;
commands are PRINT, DISPLAY, and LIST,VALUES.

® Alter the contents of variables and arrays; commands
are MOVE and assignment.

HOME PROGRAM

FORTRAN programs consist of a main program and,
optionally, one or more subprograms. Variable names
within a program are local to the program unit in which
they are defined; that is, variable names are known only
within the program in which they are used. This concept is
illustrated in figure 3-1. In this example, the variable A is
defined twice: once in the main program and once in the
subroutine. However, execution of the statement A=1.0 in
the subroutine does not alter the contents of the
variable A in the main program; the value printed for A is
always 1.0. Although two variables have the same name,
each variable is local to the program unit in which it is
defined.

The same concept of locality applies to CID. When a
program consisting of multiple program units is executed
under CID control, execution can be suspended in the main
program or in any of the subprograms. The default home
program is defined as the program unit in control at the
time of suspension. Variable names, line numbers, and
statement labels specified in CID commands are those
contained in the home program.

The home program concept is illustrated by the debug
session in figure 3-2 that is produced by executing the
program in figure 3-1 in debug mode. Breakpoints are set
to suspend execution in the main program after the cali to
SUBA, and in SUBA itself. When execution is suspended in
SUBA, SUBA is the home program and the PRINT command
shows 2.0 as the value of A; when execution is suspended in
the main program, the value of A is 1.0.

PROGRAM MAIN

VTHWN -

SUBROUTINE SUBA

SWN =

PROGRAM MAIN
A=1.0

CALL SUBA
PRINT*, 'A = ',A

SUBROUTINE SUBA
A=2.0
RETURN

4174 oPT=0

4174 OPT=0

Program Output.

END MAIN

12400 MAXIMUM EXECUTION FL.
.056 CP SECONDS EXECUTION TIME.

Figure 3-1. Main Program and Subroutine lllustrating Local Variables

60484100 A

3-1

CYBER INTERACTIVE DEBUG

790 s

?2print*,a -

2.

790 -

?2print*, a--—

1.
2quit

DEBUG TERMINATED

?set,breakpoint,l.4 ««—— Set a breakpoint at line 4 of main program.
?set,breakpoint,p.suba_Ll .3 Set a breakpoint at line 3 of subroutine SUBA.
Initiate execution.

*B #2, AT P.SUBA_L.3 =e——— Execution suspended at line 3 of SUBA.
Display value of A defined in SUBA.

Resume execution.

*B #1, AT L.4 (OF P.MAIN)-=- Execution suspended at line 4 of main program.
Display value of A defined in main program.

Figure 3-2. Debug Session lllustrating Home Program Concept

REFERENCING LOCATIONS
OUTSIDE THE HOME PROGRAM

In some cases, you might wish to reference a location in a
program unit other than the home program. For example,
when execution is suspended in the main program, you
might want to set a breakpoint or display a value local to
another subprogram. To accomplish this, you can do either
of the following:

o Use CID commands which allow a variable name, line
number, or statement label specification to be
qualified by a program unit name.

e Designate a new home program with the SET,HOME
command.

QUALIFICATION NOTATION

Qualification notation allows you to specify a variable, line

number, or statement label occurring in a program unit

other than the home program. This notation has the
following forms:
P.prog_var
Denotes variable var in program unit prog.
P.prog_L.n
Denotes line n in program unit prog.
P.prog_S.n
Denotes statement labeled n in program unit prog.

The program unit name and variable, line number, or

statement label specification are separated by an

underscore character. Qualification notation is valid for
all CID commands except the PRINT and assignment
commands described later in this section.

Examples:

P.NEWT_X

V ariable X in program unit NEWT.

3-2

P.SUBZ_L.410

Line 410 in program unit SUBZ.
P.FUNC_S.12

Statement labeled 12 in program unit FUNC.

Qualification notation can be substituted for the normal
variable, line number, or statement label specification in
CID commands for which this notation is valid, as in the
following example:

SET,BREAKPOINT,P.CAT_L.25
Sets a breakpoint at line 25 of program unit CAT.

Qualification notation also appears in many types of CID
informative output. For example, the message:

*B ##1 AT P.XYZ_L.14

indicates that a breakpoint was encountered at line 14 of
program unit XYZ.

CID notation forms are summarized in table 3-1.

SET, HOME COMMAND

As an alternative to the qualification notation or in cases
where this notation is invalid, you can specify locations
outside the default home program by first issuing the
command:

SET,HOME,P.prog

where prog is a program unit name. This command changes
the home program. Any unqualified variable names, line
numbers, or statement labels specified after entering the
SET,HOME command belong to prog. It is important to
note that the SET,HOME command does not alter the
location where execution resumes when you issue GOj;
execution always resumes at the location where it was
suspended regardless of SET,HOME specification. In
addition, when execution is resumed, a previous SET,HOME
specification is lost, and the home program reverts toc the
one currently executing.

60484100 A

TABLE 3-1. CID NOTATION

Notation Description

P.prog Program unit prog.

var Simple or subscripted variable
name.

P.prog_var Variable in program unit
prog.

L.n Source line having sequence
number n.

P.prog L.n Source line having sequence
number n in program unit prog.

S.n Source statement labeled n.

P.prog_S.n Source statement labeled n in pro-
gram unit prog.

C. Unlabeled common block.

C.blk Common block blk.

XC.blk Common block blk in extended
memory.

C.blk n Word n+l of common block bik.

The following two examples produce the same resuits: a
breakpoint is set in program unit XXX while execution is
suspended in program unit YYY. Program execution is
then resumed at the point of suspension (line 21 of program
unit YYY).

Example 1:

#B #1 AT P.YYY_L.21
? SET,BREAKPOINT,P.XXX_L.5
? GO

Example 2:

#8 #1 AT P.YYY_L.21
? SET,HOME,P.XXX
? SET,BREAKPOINT,L.5
? GO

The debug session in figure 3-3, produced by executing the
program in figure 3-1 in debug mode, illustrates another
example of the SET,HOME command. Note that on
program termination, the home program is once again the
main program. To print the value of A in subroutine SUBX,
a SET,HOME command must be entered.

DEBUGGING AIDS FOR PROGRAMS
WITH MULTIPLE PROGRAM UNITS

CID provides features that can be helpful when your
program contains a number of subroutine calls. The
#HOME debug variable tells you the name of the program
unit where execution is suspended (unless you changed it
with the SET,HOME command). The TRACEBACK
command is useful for programs containing a number of
calls to a given subprogram; when execution is suspended in
a subprogram, it tells you from where the subprogram was
called.

#HOME DEBUG VARIABLE

The #HOME debug variable is a special variable belonging
to CID. This variable always contains the name of the
current home program. You can display the contents of
this variable with the command:

DISPLAY,#HOME

CYBER INTERACTIVE DEBUG

?set,breakpoint,l.4

700 -

*B H1, AT L.4 -

2print* ,a -

1.
?set,home,p.suba -

2printx,a ——

2.

7?90 —-

A=1.

*T #17, END IN P.MAIN L.5 =
?

END MAIN

15700 MAXIMUM EXECUTION FL.

.260 CP SECONDS EXECUTION TIME.
print*,a -es—-

1.
?

Set a breakpoint at line 4 of home program (MAIN).
Initiate execution.

Execution suspended at line 4.

Display value of A defined in home program (MAIN).

Designate subroutine SUBA as home program.

Display value of A defined in home program (SUBA).

Resume execution (at point of suspension in MAIN).

Program terminates.

Display value of A defined in home program (MAIN).

Figure 3-3. Debug Session lllustrating SET,"HOME Command

60484100 A

CID displays the name of the current home program in the
form:

#HOME=P.prog

This variable is useful for determining the subroutine
where execution is suspended, although CID normally
displays the home program name when suspension occurs.
Note, however, that if you change the home program with
the SET,HOME command, #HOME contains the name of
the new home program.

Debug variables are described in greater detail later in this
section (under Debug V ariables).

TRACEBACK COMMAND

The TRACEBACK command displays a list of subroutine
levels from the level of the current home program through
the main level. At each level, TRACEBACK displays the
name of the program unit that last called the current

subroutine, and the line number within the program unit
where the call occurred. The format of this output is
P.name_L.n. The form of the TRACEBACK commangd is:

TRACEBACK

Displays a traceback list beginning at the current
home program.

The TRACEBACK command is illustrated by the program
and debug session shown in figure 3-4. The program
contains three levels of subroutine calls. Breakpoints are
set in subroutines SUB3 and SUB4, the lowest level. When
execution is suspended at these breakpoints, the
TRACEBACK command is entered.

ERROR AND WARNING PROCESSING

Each time you enter a command, CID checks the command
for correctness. If errors are detected, CID issues either
an error or a warning message.

00100 PROGRAM MAIN
00110 CALL suB1

00120 END

00130cC

00140 SUBROUTINE SUB1
00150 CALL suB2

00160 RETURN

00170 END

00180¢C

00190 SUBROUTINE SUB2
00200 CALL SUB3

00210 CALL SuB4

00220 RETURN

00230 END

00240¢C

00250 SUBROUTINE SUB3
00260 RETURN

00270 END

00280¢C

00290 SUBROUTINE SUB&4
00300 RETURN

00310 END

CYBER INTERACTIVE DEBUG
? set,breakpoint,p.sub3_L.260
? set,breakpoint,p.sub4 L.300
? go -

*B #1, AT P.SUB3 _L.260-==

Execution suspended in SUB3.

? traceback ==

P.SUB3 CALLED FROM P.SuB2_L.200
P.SUB2 CALLED FROM P.SUB1_L.150
P.SUB1 CALLED FROM P.MAIN L.110

Initiate traceback from SUB3.

? traceback,p.sub4 —= .
*ERROR - PROGRAM SUB4 NOT CALLED
? go .

*B #2, AT P.SUB4_L .300 ==

Attempt to initiate traceback from SUB4.

? traceback -

Execution suspended in SUB4.
Initiate traceback from SUB4.

P.SUB4 CALLED FROM P.SUB2_L.210
P.SUB2 CALLED FROM P.SUB1_L.150
P.SUB1 CALLED FROM P.MAIN L.110

Initiate traceback from SUB3.

? traceback,p.sub3-=-
P.SUB3 CALLED FROM P.SUBZ_L.ZDO
P.SUB2 CALLED FROM P.SUB1 L.150

P.SUB1 CALLED FROM P.HAIN:L.110
?

Figure 3-4. Program and‘Debug Session lllustrating TRACEBACK Command

60484100 A

ERROR MESSAGES

CID issues an error message whenever it encounters a
command that cannot be executed. Error messages are
usually caused by a misspelled command or an illegal or
misspelled parameter. CID does not attempt to execute an
erroneous command. CID error messages, which are
followed by a user prompt, have the form:

*ERROR-text
2 g
The text contains a brief description of the error.

In response to an error message, you should consult the CID
reference manual or use the HELP command to determine
the correct command form, and reenter the command.
Figure 3-5 illustrates some typical error messages. The
first message is caused by a misspelled PRINT command.
In the second example, the command is syntactically
correct but the home program does not contain a
statement labeled 10; a qualifier directing CID to another
program unit was omitted from the statement label
specification.

*B #1, AT L.120
? pirntx,a
*ERROR - UNKNOWN COMMAND
? printk,a
1.
? set,breakpoint,s.10
*ERROR - NO EXECUTABLE STATMENT 10

? set,breakpoint,p.sub__s.10
2

Figure 3-56. Debug Session lllustrating Error Messages

WARNING MESSAGES

CID issues a warning message if a command you have
entered will have consequences you might not be aware of
or if the command will result in CID action other than that
which you have specified. The warning message is followed
by a special input prompt; in response to this prompt, you
‘can tell CID either to execute the command or to ignore
it. The format of a warning message is:

*WARN-message
OoK?

The message describes the action CID will take if allowed
to execute the command. In response to a warning
message you can enter the following:

YES or OK CID executes the command.

NO . CID disregards the command.
Any CID Command CID disregards the previous

command and executes the
new one.

Some examples of warning messages are illustrated in
figure 3-6. The first message is generated wnen the
programmer attempts to set a breakpoint beyond the last
executable statement of the home program. In this case,
the programmer omitted a qualifier from the line number
specification in the SET,BREAKPOINT command. The
correct command is entered in response to the OK?
prompt. The second message occurs after a CLEAR,TRAP
command is entered. CID warns that this command
removes all existing traps, and allows the programmer to
reconsider. The programmer then enters an affirmative
response, and CID executes the CLEAR,TRAP command.

Warning messages can be suppressed by an option on the
SET,OUTPUT command, described later in this section
(under Control of CID Output). In this case, CID
automatically takes the action indicated in the message,
without providing notification.

Refer to the CID reference manual for a complete list of
warning messages and an explanation of each.

TRAPS AND BREAKPOINTS

When conducting a debug session, you must initially provide
for gaining interactive control at some point within your
program. CID provides two methods of doing this: traps
and breakpoints.

A breakpoint (introduced in section 2) causes program
execution to be suspended when a specified statement is
reached in the flow of execution. A trap causes execution
to be suspended when a specified condition is detected
during execution. Both traps and breakpoints cause CID to
give control to you so that you can examine and alter the
status of your program at various points during execution.

In a typical debug session, you establish traps and
breakpoints prior to initiating execution of the program.
When a trap condition occurs or a breakpoint is detected
during execution, CID receives control and, in turn, gives
you the opportunity to enter CID commands.

? set,breakpoint,L.190 -

? clear,trap

0K ? ok
?

*WARN = LINE 190 NOT EXECUTABLE - LINE 170 WILL BE USED
0K ? set,breakpoint,p.getr_L.190

*WARN - ALL WILL BE CLEARED

Figure 3-6. Debug Session I‘IIustrating Warning Messages

60484100 A

In most debugging situations, breakpoints, rather than
traps, are recommended for suspending execution. Traps
can be useful in certain cases, but some trap types require
you to be familiar with COMPASS instructions; only trap
types useful to most FORTRAN programmers are covered
here. Breakpoints allow you to suspend execution at any
executable statement in your program and can, in most
cases, be substituted for traps.

Traps and breakpoints exist only for the duration of a
debug session. Once a session is terminated, all traps and
breakpoints set during a session cease to exist. An object
program is not permanently altered by any traps or
breakpoints established during a session.

CID provides commands that enable you to:

e Establish traps and breakpoints.

o Display a list of existing traps and breakpoints.
e Remove existing traps and breakpoints.

e Save trap and breakpoint definitions on a separate file
for use in a later debug session.

SUSPENDING EXECUTION WITH
BREAKPOINTS

A breakpoint is a mechanism established at a specified
location within a program such that when the location is
reached during program execution, control passes to CID
which displays a message and gives control to you.

The SET,BREAKPOINT command (described in section 2)
can be used to set breakpoints in the home program or in
any other program unit in the user program. For example:

SET,BREAKPOINT,L.100
Sets a breakpoint at line 100 of the home program.
SET,BREAKPOINT,P.ADDSUB S.12

Sets a breakpoint at the statement labeled 12 in
program unit ADDSUB.

It is important to note that breakpoints suspend execution
before the statement is executed. For example, assume a
program contains the following statements:

1 A=0.0
2 A=A+l1.0

and that a breakpoint is set at line 2. Then when line 2 is
reached, execution is immediately suspended, before the
statement at line 2 is executed. Thus, A has the vaiue 0.0,
not 1.0. When execution is resumed, the statement at
line 2 is executed and the value of A is replaced by a new
value.

FREQUENCY PARAMETERS

When a breakpoint is set at a statement, execution is
suspended each time that statement is reached. For
example, if a breakpoint is set at a statement within a DO
loop, suspension occurs on each pass through the loop. This
can result in many unnecessary suspensions during the
course of a debug session. To alleviate this situation, CID

provides another form of the SET,BREAKPOINT command
that is extremely useful for debugging DO loops and other
sections of a program which are executed frequently. The
form of this command is:

SET,BREAKPOINT,loc,first,last,step

where first, last, and step are frequency parameters. This
command sets a breakpoint that suspends execution every
stepth time the breakpoint is reached, beginning with the
first time and ending with the last time. For example, the
command:

SET,BREAKPOINT,L.50,10,100,5

sets a breakpoint at the statement labeled 50 which is
recognized on the tenth time the statement is reached and
every fifth time thereafter, up through the hundredth time.

As an example of the use of the frequency parameters,
consider the following loop:

DO 8 1=1,1000
X=X+FX/DX
8 CONTINUE

To examine the progress of the iteration X=X+FX/DX, you
can set a breakpoint at statement 8, specifying frequency
parameters to suspend execution at an interval rather than
on each pass through the loop. For example:

SET,BREAKPOINT,S.8,1,1000,100

sets a breakpoint that suspends execution on every
hundredth pass through the loop, starting with the first
pass.

To illustrate the SET,BREAKPOINT command, the program
shown in figure 3-7 is executed under CID control. This
program performs the same calculation as the program
shown in figure 2-4 in section 2, but it has been
modularized into a main program and a subroutine. The
main program RDTR reads input data from the file TRFILE
and calls subroutine AREA. AREA performs the
computations and returns the final result. Control then
branches to the beginning of the program, and another
record is read and processed. A sample input file,
containing four records, is also shown in figure 3-7.

The resulting debug session is shown in figure 3-8. The
purpose of this session is to suspend execution in the main
program, immediately before the call to AREA, to examine
the input values. Execution is also suspended at the end of
subroutine AREA to examine the intermediate values and
the final result. To accomplish this, breakpoints are set at
line 5 of the main program and at line 7 of subroutine
AREA. In both SET,BREAKPOINT commands, the
frequency parameters:

1,10,2

are included so that execution is suspended only on every
other pass through the program, beginning with the first
pass. After the tenth pass, the breakpoint will not be
recognized. Since four input records are provided for this
example, execution is suspended on the first and third
passes through the program. Each time execution is
suspended, the PRINT command is used to display the
desired values, and the GO command is used to resume
execution.

60484100 A

Program RDTR and Subroutine AREA:
PROGRAM RDTR

1

2

3

4 10
5

6

7 999
8

SUBROUTINE AREA

1
2
3
4
5
6
7
8
Input Data
0.0 0.0 2.0 0.0 0.0 2.0
0.0 1.0 0.5 2.0 -1.0 1.2
6.1 2.00.1 -4.0 3.2 7.0
n.2 -2.9 -1.3 8.0 5.6 2.8

T4/74 0PT=0

PROGRAM RDTR

OPEN (UNIT=2,FILE='TRFILE")

REWIND 2

READ (2,%,END=999) X1,Y1,X2,Y2,X3,Y3
CALL AREA (X1,Y1,X2,Y2,X3,Y3,A)

GO TO 10
STOP
END
74/74 OPT=0

SUBROUTINE AREA (X1,Y1,X2,Y2,X3,Y3,A)
S1=SQRT((X2-X1)%*2 + (Y2-Y1)**2)
S2=SQRT ((X3~X1)**x2 + (Y3~-Y1)%*2)
S3=SQRT((X3-X2)**2 + (Y3-Y2)%%2)
T=(S1452+83)/2.0
A=SQRT(T*(T-S1)*(T-§2)*(T-53))

RETURN

END

Figure 3-7. Program RDTR, Subroutine AREA, and Input Data

DISPLAYING A LIST OF BREAKPOINTS

You can display a list of breakpoints defined in a debug

session by entering one of the following commands:
LIST,BREAKPOINT
Displays a list of all breakpoints in the program.

LIST,BREAKPOINT,P.prog

Figure 3-9 illustrates a debug session (for the program
shown in figure 3-7) in which some breakpoints are defined,
and listed later in the session.

REMOVING BREAKPOINTS

You can remove breakpoints during a debug session by
entering one of the following commands:

CLEAR,BREAKPOINT

Displays a list of all breakpoints in the specified

program unit.

The LIST,BREAKPOINT command lists the breakpoints
The list
contains the number and location of each breakpoint in the

that exist at the time the command is entered.
following form:

*B ## = P.prog_L..n

Clears all breakpoints in all program units.

CLEAR,BREAKPOINT,locj,loc, . . . ,Jlocy

where i is the breakpoint number assigned by CID, prog is
the program unit containing the breakpoint, and n is the
line number where the breakpoint is located. (If the
breakpoint was set at a statement label, the notation S.n
appears, indicating the statement label, instead of L.n.) If
the breakpoint is in the home program, the qualifier P.prog
does not appear. If frequency parameters were specified
when the breakpoint was set, they also appear in the list.

If no breakpoints exist when a SET,BREAKPOINT command
is entered, CID displays the following message:

NO BREAKPOINTS

60484100 A

Clears the breakpoints from the specified
locations; locj can have any of the following
forms:
L.n Line n of the home program
S.n Statement labeled n in the
home program
P.prog_L.n Line n in program unit prog
P.prog_S.n Statement labeled n in program
unit prog
P.prog All breakpoints in program unit
prog
#n Breakpoint having number n

CYBER INTERA(:‘TIVE DEBUG Set breakpoint at line 5 of main program. Breakpoint
?set,breakpoint,l.5,1,10,2% suspends execution on first and third passes.

Set breakpoint at line 7 of subroutine AREA. Break-
point suspends execution on first and third passes.

?set,breakpoint,p.area_L.7,1,10,24————-

200 —- Initiate execution.
*B #1, AT L.5 - Execution suspended at line 5 of main program.
?2print*,x1,y1,x2,y2,%x3,y3 Display first set of input values.

0. 0. 2. 0. 0. 2.
700 - Resume execution.
*B #2, AT P.AREA_L.7-= Execution suspended at line 7 of subroutine AREA.
?7printx,s1,s2,s3,t ,a== Display intermediate values and final result.

2. 2. 2.828427124746 3.414213562373 2.]
?7go —- Resume execution.
*B #1, AT L.5 (OF P.RDTR) = Execution suspended at line 5 of main program.
2print*,x1,y1,x2,y2,x3,y3 == Display third set of input values.

6.1 2. 1 -4. 3.2 7.,
? g0 - Resume execution.
*B #2, AT P.AREA L.7 = Execution suspended at line 7 of subroutine AREA.
?print*,s1,s2,s3,t,a = Display intermediate values and final result.

8.485281374239 5.780138406647 11.42847321386 12.84694649737 23.7
790 - Resume execution.

*T #17, END IN P.RDTR_L.6 = Program runs to completion.
?

STOP

21100 MAXIMUM EXECUTION FL.

1.080 CP SECONDS EXECUTION TIME.
quit - Terminate session.

DEBUG TERMINATED

Figure 3-8. Debug Session iHustrating SET.BREAKPOINT Command

CYBER INTERACTIVE DEBUG

?set,breakpoint,l.5,1,10,2 -—— Set breakpoint at line 5 of home program.
?set,breakpoint,p.area_L.7,1,10,2—= Set breakpoint at line 7 of subroutine AREA,
7go - Initiate execution.

*B #1, AT L.5-== Execution suspended at line 5 of home program.
?2list,breakpoint == List all breakpoints.

*B #1 = L.5,,10,2, *B #2 = P.AREA_L.7,,10,2
2

3-8

Figure 3-9. Debug Session lllustrating LIST,BREAKPOINT Command

60484100 A

If the first form of the command is entered, CID displays
the message:

*WARN - ALL WILL BE CLEARED
OK?

This message serves as a reminder that the command you
have just entered will remove all breakpoints in the entire
program (not just the home program). If this is not what
you want, enter:

NO
and CID disregards the CLEAR,BREAKPOINT command.
If you do want the CLEAR,BREAKPOINT command to be
executed, enter:

oK

and CID clears all existing breakpoints.

If a breakpoint does not exist at a specified location, CID
displays the message:

NO BREAKPOINT loc
where loc is the breakpoint location, and no action is taken.
Examples:
CLEAR,BREAKPOINT,L.14,l..20,P.SUB3_S.5
Removes the breakpoints from lines 14 and 20 of
the home program and from the statement labeled
5 in program unit SUB3.
CLEAR,BREAKPOINT,P.READXY,P.ADDR

Removes all breakpoints from program units
READXY and ADDR.

CLEAR,BREAKPOINT,#3, #5,#6
Removes breakpoints 3, 5, and 6.
CLEAR,BREAKPOINT,L.14,P.MULT,#6
Clears the breakpoint from line 14 of the home
program, clears all breakpoints from program unit

MULT, and clears breakpoint number 6 from the
home program.

SUSPENDING EXECUTION

WITH TRAPS

A trap is a special condition within a program which
suspends program execution whenever that condition is
detected during execution. Control then passes to CID,
which displays a message and gives control to you.

TRAP USAGE

The most useful traps to the FORTRAN programmer are
the LINE and STORE traps. (The END and ABORT traps
are also used, but they are established automatically
by CID.) The OVERLAY trap is used only with programs
containing overlays and is described in section 5. The
remaining CID traps (JUMP, FETCH, INS, and RJ) are not
recommended for use with FORTRAN programs because
their use can be time-consuming and they can cause
program execution to suspend in unexpected places. For
example, the RJ trap suspends execution at every return
jump instruction generated by the FORTRAN program.
Return jumps are generated not only by CALL and
RETURN statements, but also by any external reference.
A program can contain many hidden external references,
such as those generated by input/output statements. The
result can be many unnecessary suspensions of execution.
The traps described in this section are listed in table 3-2.
Refer to the CYBER Interactive Debug reference manual
for information on other CID traps.

When a trap condition is detected, execution is suspended
and CID gains control and issues a message identifying the
trap, followed by a ? prompt for user input. The message
gives information about the trap, including the trap type,
the trap number, and the statement (L.n or S.n) where the
trap occurred. The trap number is a decimal integer
assigned by CID. Traps are numbered sequentially in the
order they are established. The purpose of trap numbers is
described later in this section. An example of a trap
message is:

*T #3, LINE IN P.SBX_L.5
?

In this example, a LINE trap has been detected in line 5 of
program unit SBX; this trap was the third one established
by the programmer.

TABLE 3-2. TRAP TYPES

Short . Established
Trap Type Form Condition By User Gets Control
LINE L Beginning of an executable statement User Before the statement is executed
STORE S Store to memory User After the store
OVERLAY OvL Overlay load User After the overlay is loaded
INTERRUPT INT User interrupt or time limit Default After the interrupt
END E Normal program termination Default After termination
ABORT A Abnormal program termination Default After termination

60484100 A

3-9

In response to the ? prompt, you can enter any CID
command. Typically, you will use this opportunity to
examine the values of program variables, and make any
desired changes to these values. Program execution can be
resumed by entering a GO command.

Traps suspend execution when a specific event occurs.
Some traps suspend execution before the event, while
others suspend execution after the event. This is an
important distinction because it can affect the status of
variables you are displaying or altering. For example,
assume that execution is suspended at line 2 of the
following program segment:

1 A =00
2 A = A+l.0

If the trap suspended execution before the statement at
line 2 was executed, A contains 0.0. If the trap suspended
execution after the statement was executed, A
contains 1.0.

Table 3-2 indicates, for each trap, the boint in execution
where CID gets control.

The traps described in this section are of two types:
user-established and default. The user-established traps
are set by the SET,TRAP command. The default traps
always exist; it is not necessary to specify a SET,TRAP
command for these traps. Table 3-2 indicates default and
user-established traps.

DEFAULT TRAPS

CID provides default traps that are automatically set at
the beginning of a debug session. These traps allow you to
gain control without actually establishing any traps or
breakpoints. The default traps are the END, ABORT, and
INTERRUPT traps.

Together, the END and ABORT traps transfer control to
CID on any program termination. Thus, for the initial
debug session, you can allow your program to terminate; by

examining the status of the program at the point of
termination, you can determine where traps or breakpoints
should be set for subsequent sessions.

END Trap

The END trap gives control to CID on normal program
termination. This trap always occurs when a program
terminates normally, regardless of any CID commands that
have been entered to set or clear traps.

Note that the debug session does not end when your
program terminates. The END trap allows you to enter
commands and continue the session until you enter the
QUIT command.

The debug session in figure 2-4 in section 2 illustrates the
END trap. The program runs to completion and CID gains
control and issues the message:

*T #17, END IN L.5
?

CID permanently assigns the number 17 to the END trap.
In response to the ? prompt, you can display program
variables as they exist at the time of termination or you
can terminate the session by entering QUIT. You cannot
enter a GO command following an END trap.

ABORT Trap

The ABORT trap is useful because it allows you to gain
control on any abnormal termination of program
execution. The status of program variables can be
examined as they exist at the precise time of termination.

To illustrate how the ABORT trap works, a program
containing an error is executed under CID control. The
source listing and session log are shown in figure 3-10. The
statement C=(A+B)/(A-B) results in a division by zero. The
variable C is set to an infinite value (represented by the
character R) and when C is used as an operand in the next
statement, the program aborts with a mode 2 error. CID

PROGRAM ERR T4/74

PROGRAM ERR
A=2 .0

B=2.0
C=(A+B)/ (A-B)
p=C+1.0

END

DUV WNN =

CYRER INTERACTIVE DEBUG

oPT=0

Initiate execution.

‘)go —-2

*T #18, ABORT fPU ERROR EXIT 02 IN L.5

ABORT trap suspends execution at line 5.

?printx,a,b,.c , d—=

Display values of variables.

2. 2. R R==

Variables C and D contain infinite values.

2quit -

DERUG TERMINATED

Terminate session.

Figure 3-10. Program ERR and Debug Session Hlustrating ABORT Trap

3-10

60484100 A

immediately gains control and issues the trap message
indicating the trap type, number, location, and the error
number. The user enters the PRINT command to display
the contents of program variables. Note that, in this case,
the value of the infinite operand is represented by the
character R and the indefinite operand is represented by
the character L. The QUIT command terminates the
session.

The ABORT trap is permanently assigned the number 18
by CID.

INTERRUPT Trap

An INTERRUPT trap gives control to CID when a terminal
interrupt is issued.

The procedure for issuing a terminal interrupt depends on
the terminal type and on the interactive communication
system in use. Refer to the Intercom reference manual
(NOS/BE) or the IAF reference manual (NOS) for more
information on interrupt sequences. A terminal interrupt
allows you to gain control at any time during a debug
session.

When you enter the appropriate interrupt sequence, the
process currently active is interrupted; CID gets control,
issues the INTERRUPT trap message, and gives control to
you. The INTERRUPT trap cen be used to terminate
excessive output to the terminal, although it will cause the
remaining output to be lost. It can also be used to
interrupt a program that you believe to be looping
excessively at some unknown location.

USER-ESTABLISHED TRAPS

In addition to the default traps, CID provides traps that
can be established whenever you have control.

SET,TRAP C_ommand

The traps described in the following paragraphs are
established with the SET,TRAP command. This command
has the form:

SET,TRAP,type,scope

where type is one of the trap types listed in table 3-2, and
scope is one of the notation forms listed in table 3-1.

The scope parameter of the SET,TRAP command specifies
the program locations for which the trap is effective. The
scope of a trap can be a single location, such as a variable
or a FORTRAN statement, or it can consist of multiple
locations, such as an array or a complete program unit.
Not all forms listed in table 3-1 are valid for all trap
types; valid forms depend on the particular trap type.

60484100 C

Certain traps allow you to specify an asterisk (¥) for the
scope parameter. This means that the trap is effective
throughout the entire program.

Traps can be established whenever program execution is
suspended and CID has issued a ? prompt. If a condition
for which you have established a trap does not occur, the
program executes normally.

LINE Trap

The LINE trap suspends program execution and gives
control to CID immediately prior to execution of each
executable FORTRAN statement within the specified
scope. This trap allows you to step through an executing
program, and to examine and alter variable values before
each statement is executed. The command to set a LINE
trap has the form:

SET, TRAP,LINE,scope
where scope has one of the following forms:

* Trap is set for each statement in all program
units in the user program.

P.prog Trap is set for each statement in the
specified program unit.

Examples:
SET, TRAP,LINE, *

Suspends execution before each executable
statement of the entire program.

SET,TRAP,LINE,P.SUBX

Suspends execution before each executable
statement in program unit SUBX.

An additional form of the scope parameter is available
which allows you to set the LINE trap for a range of
FORTRAN lines. The form:

Ln...L.n2
defines the trap for source lines ny through n2.
Qualification notation can be used with this form to denote
a range of lines in a program unit other than the home
program.
Examples:

SET,TRAP,LINE,L.1...L.14

Sets a LINE trap at source lines 1 through 14 of
the home program.

SET, TRAP,LINE,P,AAA_L.45... P.AAA_L.54

Sets a LINE trap at source lines 45 through 54 of
program unit AAA.

3-11

To illustrate the LINE trap, the program in figure 3-11 is
executed under CID control. The session log is shown in
figure 3-12. The program consists of a main routine
PROGY and a suroutine SETB. The main routine contains
two calls to SETB; SETB stores values into array B
depending on the value of the variable K. The first CID
command sets the LINE trap. The scope parameter
specifies that the trap applies only to the main program.
The trap occurs immediately before each executable
statement. The PRINT command is entered after each
subroutine call (execution suspended at lines 6 and 8). The
GO command resumes execution after each suspension.
Note that both the LINE and END traps occur at line 8, the
last executable statement of the program. This illustrates
that more than one trap can occur at the same location.

PROGRAM PROGY 74774 oOPT=0

PROGRAM PROGY
COMMON /BCOM/ B(S)
N=5

K=1

CALL SETB (K.N)
K=2

CALL SETB (K,N)
END

PNIA AN

SURROUTINE SETB 74174 oOPT=0

SUBROUTINE SETB (K,N)
COMMON /BCOM/ B(5)
IF (K .EQ. 1) THEN
Do 6 I=1,N
& B(I)=-1.N0
ELSE
DO 12 I=1,N
12 B(I)=1.0
ENDIF
RETURN
END

2 DO0OBNIAP NN D

-

Figure 3-11. Subroutine SETB and Main Program

STORE Trap
The STORE trap suspends execution whenever data is
stored into the specified locations. The command to set a
STORE trap has the form:

SET,TRAP,STORE,scope
where scope has one of the following forms:

var

Simple or subscripted variable var in home
program.

P.prog_var

Simple or subscripted variable var in program unit
prog.

C.blk

All words in common block blk.

3-12

The STORE trap is useful because it allows you to gain
control whenever a specific variable is modified. You can
then display the value stored into the variable. A variable
is modified whenever a statement is executed in which the
variable appears to the left of an equals sign or whenever
the variable receives data as a result of an input operation.

Examples:
SET,TRAP,STORE,P.SUBX_A

Suspends execution whenever data is stored into
the variable A in subroutine SUBX.

SET,TRAP,STORE,ARR(100)

Suspends execution whenever data is stored into
word ARR(100) in the home program.

SET,TRAP,STORE,C.BCOM

Suspends execution whenever data is stored into
any word in common block BCOM.

If an array name without a subscript is specified for the
SCOPE parameter, the STORE trap is set only for the first
location of the array. To set a STORE trap that is
effective for all elements of an array, or for elements
within an array, use the following ellipsis notation:

a(ny)...a(np)

This notation denotes elements n) through ny of
array a.

Qualification notation can be combined with ellipsis
notation to designate an array local to program unit other
than the home program:

P.prog_a(ny)...P.prag_a(ny)

denotes elements n) through ny of array a in program
unit prog.

The following examples assume an array dimensioned X(10):
SET,TRAP,STORE,X

Suspends execution whenever data is stored
into X(1).

SET,TRAP,STORE,X . . . X(10)

Suspends execution whenever data is stored into
any of the elements X(1) through X(10).

SET,TRAP,STORE,P.ADDB_X(5)...P.ADDB_X(15)

Suspends execution whenever data is stored into
any of the elements X(5) through X(15) in program
unit ADDB. (X is local to ADDB.)

The STORE trap can be helpful in debugging situations
involving a long program in which a variable is being
inadvertently changed at an unknown location. For
example, suppose a program contains a variable A which is
passed as a parameter to several subprograms. It might be
important to determine which subprogram is changing the
value of A. The command:

? SET,TRAP,STORE, A

60484100 A

CYBFR INTERACTIVE DEBUG

?set,trap,line,p.progy ==

?2Q0 -

*T #1, LINE AT L.3
2print*,.n

% K ded ek ok ok ok kkok ok ok ok ok ok -

7290

*T #1, LINE AT L.4
?a0

*T #1, LINE AT L.S
?printx,n,k

5 1
*T #1, LINE AT L.6
?printx, b

-1. =-1. -1. -1. -1.
?2g0

*T #1, LINE AT L.7
2print*, k

2
200

*T #1, LINE AT L.R%
2print*,b

1. 1. 1. 1. 1.
?go0

*T #17, END 1IN L.8“

2q0 LINE trap suspends execution at lines 3

___ through 8. After each suspension,
selected values are displayed and
execution is resumed.

?
END PROGY
123NN MAXIMUM EXECUTION FL.
.719 CP SECONDS EXECUTION TIME.

Set LINE trap in PROGY.

Inititate execution.

Variable N contains meaningless value because it has not
been initialized. '

END trap occurs at line 8.

Figure 3-12. Debug Session lllustrating LINE Trap

can be used, with the home program set to the highest
level routine that uses A. Whenever A is changed, in any of
the subprograms, execution will suspend and the trap
message will indicate the routine name and line number

where the change occurred. Note that this. example is

valid even if the dummy argument in a subprogram has a
name different from A. Thus, the preceding command will
cause execution to suspend when the variable B is changed
as follows:

CALL SUB(A)

.

END
SUBROUTINE SUB(B)
B=B+1.0

60484100 A

In the trap message, however, the variable that appears is
the one specified in the SET,TRAP command. One
significant disadvantage of the STORE trap is that it
requires interpret mode execution. (See Interpret Mode,
following this discussion.) After you set a STORE trap,
CID displays the message:

INTERPRET MODE TURNED ON

Interpret mode greatly increases the execution time
required by a program. For this reason, you should not set
a STORE trap until you reach a point in a debug session
where you want the trap to be effective. When you reach a
point in the session where you no longer need the trap, you
should remove it. (See Removing Traps.)

An example of a debug session using a STORE trap is
illustrated in figure 3-13. The program in figure 3-11 was
executed under CID control to produce this session log.
The STORE trap is set so that CID gets control whenever
data is stored into common block BCOM. Execution is
subsequently suspended on each pass through the DO loop
when the constant is stored into each of the five locations
of the array B in common block BCOM.

3-13

DISPLAYING A LIST OF TRAPS

To display a list of traps defined for a debug session, enter
the command:

LIST,TRAP

This command displays the type, number, and location of
all traps that exist at the time the command is entered.
LIST,TRAP output has the following form:

T #fn = type scope

where n is the trap number assigned by CID, type is the
trap type as listed in table 3-2, and scope is the location of
the trap in the form specified in the SET,TRAP command
(P.prog or P.prog_var).

If no traps exist when LIST,TRAP is entered, CID displays
the message:

NO TRAPS

Figure 3-14 shows a debug session in which some traps are
established and then listed. Trap number 1 is a LINE trap
in program unit RDTR, and trap number 2 is a STORE trap
for the variable A in program unit AREA.

REMOVING TRAPS
A user-defined trap can be removed at any time during a
debug session with the CLEAR,TRAP command. This
command has the following forms:

CLEAR,TRAP

Removes all user-defined traps in all program
units. ’

CLEAR,TRAP,type,P.prog

Removes the traps of the specified type from the
specified program unit.

CLEAR,TRAP,type
Removes all traps of the specified type.
CLEAR,TRAP,#n),#ng, ..., #nmy

Removes the traps identified by the specified
numbers.

The type parameter can be any of the types listed in
table 3-2 except for the default INTERRUPT, END, and
ABORT traps, which cannot be removed.

CYBER INTERACTIVE DEBUG

?set,trap,store,c.bcom =

INTERPRET MODE TURNED ON

DEBUG TERMINATED

?go

*T #1, STORE INTO B IN P.SETB_L.5)
?go

*T #1, STORE INTO B+1 IN L.5

?go

*T #1, STORE INTO B+2 IN L.5 >_
?go

*T #1, STORE INTO B+3 IN L.S

?go

*T #1, STORE INTO B+4 IN L.5

?2quit /

Set STORE trap for common block BCOM.

STORE trap suspends execution each time a value is stored into
array B in common block BCOM. Execution is resumed after
each suspension. Note that B corresponds to the first word of
the block, B+1 corresponds to the second word, and so forth.

Figure 3-13. Debug Session llustrating STORE Trap

CYBER INTERACTIVE DEBUG

?set,trap,line,p.rdtr—-

?set,trap,store,p.area_t—-

INTERPRET MODE TURNED ON

790

*T #1, LINE AT L.2

?2list,trap

T #1 = LINE P.RDTR, T #2 =

STORE P.AREA_T

Set LINE trap in program unit RDTR.

Set STORE trap for variable T in subroutine AREA.

Initiate execution.

Display trap information.

Figure 3-14. Debug Session Ilustrating LIST,TRAP Command

3-14

60484100 A

The CLEAR,TRAP command can be used to remove traps
that are no longer needed in a debug session. The
command is also useful when editing command sequences,
as described in section 5. Following are some examples of
the CLEAR,TRAP command:

CLEAR,TRAP,STORE,P.SUBX_A

Clears the STORE trap at the variable A in
program unit SUBX.

CLEAR,TRAP,LINE
Clears the LINE trap.
CLEAR,TRAP,#2,i#4,i#5

Clears the traps identified by trap numbers 2, 4,
and 5.

A debug session using the CLEAR,TRAP command is
illustrated in figure 3-15. The session in figure 3-14 is
duplicated except that the CLEAR,TRAP command is
issued after the third pass through the loop, allowing the
program to run to completion without interruption. Note
that the END trap is not removed by the CLEAR,TRAP
command.

INTERPRET MODE

The STORE trap requires a mode of execution called
interpret mode. In interpret mode, each machine
instruction is simulated by CID. Interpret mode is
automatically activated when a STORE trap is set.
Interpret mode remains on until the trap is cleared by a
CLEAR,TRAP command or until explicitly turned off. CID
indicates interpret mode by issuing the message:

INTERPRET MODE TURNED ON

Execution in interpret mode is more time-consuming than
normal execution. For this reason, you should use STORE
traps sparingly. If the debug session requires excessive
computer time (a time limit interrupt occurs), you should
rerun the session and substitute breakpoints for STORE
traps wherever possible.

You can reduce. the amount of execution required for
interpret mode by turning interpret mode off while
executing portions of a program not currently being
debugged. The command to turn off interpret mode is:

SET,INTERPRET,OFF
CID responds with the message:
INTERPRET MODE TURNED OFF

This message also appears when all STORE traps are
removed with the CLEAR,TRAP command.

Traps requiring interpret mode become inoperative when
interpret mode is turned off. They can be reactivated by
the command:

SET,INTERPRET,ON

The use of the SET,INTERPRET command is illustrated by
the debug session shown in figure 3-16. The program
shown in figure 3-11 is executed in debug mode to produce
this session. In this example, a STORE trap, which
activates interpret mode, is established for the variable K
in the main program. Interpret mode is then turned off
while subroutine SETB is executing. To accomplish this,
breakpoints are set at the beginning and at the end of the
subroutine. When execution is suspended at the first
breakpoint, interpret mode is turned off; when execution is
suspended at the second breakpoint, interpret mode is
turned back on, reactivating the STORE trap.

CYBER INTERACTIVE DEBUG

?set,trap,store,c.bcom-=

INTERPRET MODE TURNED ON

730 -

Set STORE trap for common block BCOM,

Inititate execution.

*T #1, STORE INTO B IN P.SETB_L.S
290

STORE trap suspends execution on

*T #1, STORE INTO B+1 IN L.5
?go

*T #1, STORE INTO B+2 IN L.5

store into array B. Execution resumed
after each suspension.

?clear,trap,store-=

INTERPRET MODE TURNED OFF
?2list,trap

NO TRAPS
?go

Remove STORE trap.

=T #17, END IN P.PROGY_L.8-==
?
END PROGY
12300 MAXLMUM EXECUTION FL.
.367 CP SECONDS EXECUTION TIME.

Program runs to completion.

Figure 3-15. Debug Session lllustrating CLEAR,TRAP Command

60484100 A

3-15

CYBER INTERACTIVE DEBUG

?7set,trap,store, k —-=

INTERPRET MODE TURNED ON

Set STORE trap for variable K.

?set,breakpoint,p.setb_L.3 =

Set breakpoint at first executable statement of SETB.

Set breakpoint at RETURN statement in SETB.

?set,breakpoint,p.setb_L.10-=

?7go

*T #1, STORE INTO K IN L.4—-
?7go

STORE trap at line 4.

*B #1, AT P.SETB L.3 =

Breakpoint suspends execution at line 3 of SETB.

7set,interpret,of f—

?7go

Turn off interpret mode. (STORE trap inhibited.)

*8 #2, AT P.SETB_L.10—=

Breakpoint suspends execution at line 10 of SETB.

?set,interpret,on—--

?go

?print* k

2
7quit

DEBUG TERMINATED

*T #1, STORE INTO K IN P.PROGY_L.6---———— STORE trap at line 6.

Turn on interpret mode. (STORE trap reactivated.)

Figure 3-16. Debug Session lllustrating SET,INTERPRET Command

This method of turning off interpret mode is rather
cumbersome since it is necessary to enter the
SET,INTERPRET commands on each pass through the
subroutine. This can be accomplished more efficiently by
including the SET,INTERPRET commands in a command
sequence so that they could be executed automatically.
Command sequences are described in section 4.

SUMMARY OF TRAP AND .
BREAKPOINT CHARACTERISTICS

The following is a summary of trap and breakpoint
information presented in this section:

® You can set, clear, or list traps and breakpoints any
time CID has control and has prompted for user input.

® Only one breakpoint can be established at a single
statement; however, a single breakpoint and multiple
traps can be set to occur at a single statement.

e Traps and breakpoints exist for the duration of the
debug session unless removed by the CLEAR command
or inhibited by the SET,INTERPRET,OFF command
before the session is terminated.

e The frequency parameters of the SET,BREAKPOINT
command can be used to avoid suspending execution on
each pass through a loop.

e CID automatically establishes END, ABORT, and
INTERRUPT traps so that you receive control on any
program termination, even if you have not explicitly
established any traps or breakpoints.

3-16

e Breakpoints suspend execution before the statement at
the breakpoint location is executed. The point in the
execution of a statement at which a trap suspends
execution depends on the trap type. The statement at
the trap or breakpoint location is executed in a normal
manner.

e The STORE trap activates INTERPRET mode, which
increases execution time. To reduce execution time,
specify the SET,INTERPRET,OFF command when
executing portions of the program already debugged,
or substitute breakpoints for these traps.

DISPLAYING PROGRAM VARIABLES

When execution of your program is suspended and CID has
prompted for user input, you can enter commands to
display the values of program variables as they exist at the
time of suspension. This discussion includes those forms of
the display commands that are most useful to the
FORTRAN programmer.

CID provides three commands for displaying the values of
program variables: the LIST,VALUES command; the
PRINT command; and the DISPLAY command. These
commands are summarized in table 3-3.

RECOGNIZING ERRONEOUS VALUES

FORTRAN stores specific values into variables to indicate
that certain error conditions exist. When these values are
displayed with a CID command, the following
representations are used (these values are
installation-dependent):

60484100 A

TABLE 3-3.

DISPLAY COMMANDS

Command Description Formatting Scope
LIST,VALUES Lists alphabetically all Automatic according to Specified program unit; entire program
variable names and values variable type. if none specified.
within specified scope.
PRINT Displays contents of Automatic according to Home program only.
specified variables. variable type.
DISPLAY Displays contents of User-specified; Default is home program; variables can
specified variable. default is variable be qualified for other than home
type. program.
Value Description Figure 3-17 shows a program that assigns values to an
array of type real and to variables of type character,
R or -R Value out of range: the magnitude of a complex, and boolean. The program calls a subroutine that
real value exceeds the limits of the adds a constant to the array.
computer.
1 Indefinite: result of an invalid operation. PROGRAM TYPES 74/74 OPT=0
-1 Negative indefinite: result of an invalid
operation, or variable is undefined. 1 PROGRAM TYPES
2 DIMENSION ARR(-5:5)
*xxxxxxx6%t The value exceeds the range of the 3 CHARACTER STR*6
default format. 4 COMPLEX C
5 BOOLEAN B
When an indefinite or out of range value is used in a 6 c
computation, the program aborts. If one of these values is 7 0o 8 I=-5,5
displayed as the value of a program variable, it is probably 8 8 ARR(I)=REAL(I)
the result of a programming error and should be 9 STR="'ABCDEF'
investigated. Refer to appendix C for an explanation of 10 €=(2,3.4)
error conditions and possible causes. 1 B="HELLO"
12 CALL ADDC (ARR, 10.0)
13 END
LIST,VALUES COMMAND
SUBROUTINE ADDC 14/74 oPT=0
The LIST,VALUES command alphabetically lists all
variables defined in the source program and the current .
value of each. This command automatically formats the 1 SUBROUTINE ADDC (X, C)
variables according to the variable type as declared in the 2 DIMENSION X(11)
source program. The command has the following forms: 3 D0 100 1=1,11
. 4 100 X(I)=X(I)+C
- LIST,VALUES 5 RETURN
: 6 END

Lists all variable names and values defined in all
program units, including arrays in their entirety.

LIST,V ALUES,P.name},P.namey, . . . ,P.namen,

Lists all variable names and values defined in the
specified program units.

The LIST,VALUES command provides a formatted snapshot
of the status of program variables; however, it can produce
a large amount of output, particularly if the program
contains large arrays. In this case, you can send the output
to an auxiliary file (described in section 4) or use an
alternate command to display the values. Use the PRINT
or DISPLAY command to avoid large amounts of output.

LIST,VALUES is also slow and can add substantially to the
execution time of a debug session, particularly for
programs with many variables. It is well worth the
additional time in many cases, but alternative commands
should always be considered.

60484100 A

Figure 3-17. Program TYPES and Subroutine ADDC

A debug session for this program, illustrating the
LIST,VALUES command, is shown in figure 3-18. A
breakpoint is set at line 12 so that execution is suspended
before the subroutine call. When the breakpoint is
encountered, LIST,VALUES is entered. The program
values are formatted according to their type. Note that
the boolean variable B is displayed in octal format. The
variables in subroutine ADDC are undefined because the
subroutine has not yet executed. LIST,VALUES is again
entered after the program terminates.

PRINT COMMAND
The PRINT command, introduced in section 2, is the most

useful of the display commands for the FORTRAN
programmer. This command is identical in format and

3-17

CYBER INTERACTIVE DEBUG
?set,breakpoint,l.12-= Set breakpoint at line 12,
290 —- Initiate execution,
*B #1, AT L.12 == Execution suspended at line 12.
?2list,values —= Display all program variables and their values.
P.TYPES
ARR(-5) = -5.0, ARR(-4) = -4.0, ARR(-3) = -3.0, ARR(-2) = -2.0
ARR(-1) = -1.0, ARR(D) = 0.0, ARR(1) = 1.0, ARR(2) = 2.0
ARR(3) = 3.0, ARR(4) = 4.0, ARR(5) = 5.0
B = 10051 41417 55555 55555, c = (2.0,3.4), I =6, STR = 'ABCDEF'
P.ADDC = Variables in subroutine ADDC are undefined.
C - UNDEFINED, I - UNDEFINED, X - UNDEFINED
?7g0 = Resume execution.
*T #17, END IN L.13 Program terminates.
2
END TYPES
12500 MAXIMUM EXECUTION FL.
.523 CP SECONDS EXECUTION TIME.
list,values,p.addc - Display variables and values in subroutine ADDC.
P.ADDC
¢ = 10.0, I =12, X)) = 5.0, X(2) = 6.0, X(3) = 7.0
X¢4) = 8.0, X(5) = 9.0, X¢(6) = 10.0, X<7) = 11.0, X(8) = 12.0
X(9) = 13.0, X(10) = 14.0, X(11) = 15.0
2

Figure 3-18. Debug Session Iliustrating LIST,VALUES Command

function to the FORTRAN list-directed PRINT statement.
The format is:

PRINT*, list

List elements must be separated by commas and can
consist of any of the following:

® Simple or subscripted variables

e Array names

e Character strings

o Constants

e FORTRAN expressions not involving exponentiation or
functions

e Implied DO loops enclosed in parentheses

Qualification notation cannot be used with the PRINT
command. Except for variables declared in common, the
PRINT command can only display variables local to the
home program. To display variables belonging to another
program unit, you must designate a new home. program
with the SET,HOME command.

To print the contents of an array, you can use the
FORTRAN implied DO statement or you can simply specify
the array name. For example, if the statement
DIMENSION A(10) appears in the source program, then the
commands:

PRINT*,A
and
PRINT*,(A(I),I=1,10)

3-18

are equivalent. It should be noted, however, that in the
case of multidimensioned arrays, specification of the array
name causes the elements to be displayed in column order
(the order in which they are stored), while the implied DO
form can be used to specify a row-order display.

If the implied DO form is used, CID issues a warning
message if the index exceeds the dimensioned boundaries
of the array. The variable used as the index in the implied
DO does not alter a variable of the same name used in the
FORTRAN program.

The PRINT command automatically formats each variable
according to its type as declared in the source program.
To display variables in a format other than that declared in
the source program, you must use the DISPLAY command.

A debug session illustrating the PRINT command is shown
in figure 3-19. This session is identical to the one in
figure 3-18, except the PRINT command is used to display
variable values. Note that in order to display values
defined in subroutine ADDC while execution is suspended
in the main program, ADDC must be designated as the
home program. This example also illustrates error
diagnostics that can occur as a result of an incorrect
PRINT command. The first message indicates that an
attempt was made to display a variable in a subroutine
before the subroutine was executed. The second message
indicates that the specified variable is not defined in the
home program.

DISPLAY COMMAND
The DISPLAY command displays the contents of specified

variables. In most cases, you will be using the PRINT
command since it provides for automatic formatting of

60484100 A

CYBER INTERACTIVE DEBUG

?set,breakpoint,l .12 Set breakpoint at line 12.
200 s Initiate execution.

*B #1, AT L.12 —= Breakpoint defected at line 12.
?print*,arr,str,c, b - Display values in main program.

-5. =4, -3. -2. -1. 0. 1. 2. 3. 4. 5. ABCDEF(2.,3.4)

10051414175555555555
2print*,str(4:6)//str(1:3) - Display substring.
DEFABC
?set,home,p.addc = Change home program to ADDC.
2printx , x —-. - Attempt to display array X fails because subroutine has

not been called.
*ERROR - PARAMETER REFERENCED BEFORE FIRST SUBROUTINE CALL
290 - Resume execution.

*T #17, END IN P.TYPES L.13-= Program runs to completion.
?

END TYPES
12300 MAXIMUM EXECUTION FL.
.530 CP SECONDS EXECUTION TIME.
printk, x - Attempt to display X fails because it is not defined in
the current home program.

*ERROR - NO PROGRAM VARIABLE X
?set,home,p.addc—=- Change home program to ADDC.

2printk x —-= Display X.

5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
?

Figure 3-19. Debug Session lllustrating PRINT Command

variables and is more familiar to FORTRAN programmers. format Optional format indicator; valid values
The DISPLAY command, however, offers the following are:
advantages:

F Floating-point (real)

DISPLAY can display values belonging to any program D Double-precision

unit, while PRINT can only display values local to the

home program. I Integer

DISPLAY allows you to specify the format of each C Character

variable, while PRINT performs automatic

formatting. In most cases, automatic formatting is O Octal

more convenient. However, in situations where you

want to display the value of a variable in a format Default is the variable type as declared
other than its declared or implicit format, you must in the program.

use the DISPLAY command.
Since the DISPLAY command automatically formats

DISPLAY is the only command that can display the variables, it is necessary to specify the format parameter
values of debug variables (described later in this only when you want to display a variable in a format other
section). : than that declared in the FORTRAN program.

. Examples:

The DISPLAY command has the following format:

DISPLAY,Z
DISPLAY,variable,format)
Displays the variable Z.

variable Simple or subscripted variable in the
home program, or simple or subscripted DISPLAY,XARR(3,7),C
variable with program qualifier
(P.variable). Displays word XARR(3,7) in character format.

60484100 A 3-19

To display a variable not in the home program, use
qualification notation as follows:

DISPLAY,P.prog_var,format

where prog is the program unit containing variable var.
For example:

DISPLAY,P.SUBC_A
displays variable A in program unit SUBC.

The ability to use qualification notation provides an
advantage over the PRINT command which is limited to
the home program. The following two examples produce
identical results (while execution is suspended at line 12 of
routine RA, the value of variable X in routine RB is
displayed):

Example 1:

B #1 AT P.RA_L.12
? SET,HOME,P.RB
? PRINT*,X

5.0
?

Example 2:

B #1 AT P.RA_L.12
? DISPLAY,P.RB_X
X=5.0
?

Unlike the PRINT command, the DISPLAY command
displays only the first word when an array name is
specified. To display successive words within an array,
specify the first and last words separated by three periods
(ellipsis notation), as in the following example:

DISPLAY,ARR(5)... ARR(10)
displays words 5 through 10 of array ARR in default format.

A major disadvantage of the DISPLAY command is that a
list of variables cannot be specified. For example, to
display the contents of the variables A, B, and C requires
the three DISPLAY commands:

DISPLAY,A
DISPLAY,B
DISPLAY,C

However, this can be accomplished with the single PRINT
command:

PRINT*,A,B,C

Figure 3-20 illustrates a program and debug session in
which the DISPLAY command is used to examine variables
in their internal representation. The program reads groups
of four integers from the terminal and packs each group
into a single word by using the SHIFT function and OR
operation. Each packed integer occupies a 15-bit field.
The program is executed under CID control and allowed to
terminate after three sets of integers have been input.
When the END trap gives control to CID, the DISPLAY
command is used to display the first three words of the
array IPACK in octal format showing the four 15-bit fields
of each word. The PRINT command cannot be used since
each word of IPACK would be automatically formatted as
type integer.

3-20

ALTERING PROGRAM VALUES

CID provides commands to alter the values of program
variables. Although these commands can be used to change
the contents of any location within the program field
length, as a FORTRAN programmer you will usually be
concerned only with changing the contents of variables.
After a variable value is changed and execution is resumed,
the new value is used.

The commands are:

® Assignment command. This command is identical to
the FORTRAN assignment statement. It allows you to
evaluate expressions and to insert values into variables
in the home program.

e MOVE command. This command can be used to move
data from one program unit to another.

ASSIGNMENT COMMAND

The assignment command is identical in form and function
to the FORTRAN assignment statement. This command
allows you to make corrections to your program as
execution proceeds, eliminating the need for recompiling
each time an error is discovered. The assignment
command has the form:

var=expression

where var is a simple or subscripted variable, and
expression is any valid FORTRAN arithmetic expression
not involving functions or exponentiation. The assignment
command functions exactly as in FORTRAN: the
expression is evaluated and its value is assigned to the
variable on the left of the equal sign; the previous contents
of the receiving variable are destroyed. You can enter an
assignment command whenever CID has prompted for user
input. For example, if program execution is suspended and
you have detected a variable that has an incorrect or
illegal value, you can use the assignment command to
assign a new value to the variable. When you resume
execution of the program, the new value is used in
subsequent computations involving the altered variable.

Expressions used in assignment commands can be any valid
FORTRAN expression with the exception of function
references and exponentiation. Any valid FORTRAN
constant can appear in an expression. The assignment
command performs all conversions according to the rules
of FORTRAN. An assignment command cannot span more
than one line.

The variables used in an assignment command must all be
defined in the home program. To reference variables in
another program unit, you must specify the SET,HOME
command to designate that program unit as the home
program. Just as with FORTRAN, variables are local to
the program unit in which they are defined and cannot be
mixed in an assignment command with variables local to
another program unit.

Changes made through the assignment command do not
exist beyond the end of the debug session. When a program
is reexecuted, either in debug mode or in normal mode, all
program variables have the values defined in the original
compiled version.

60484100 A

PROGRAM PAK

p0 50 N=1,3
PRINT*,'INTEGERS?

50 CONTINUE
END

Vo NV WN =

CYBER INTERACTIVE DEBUG

PROGRAM PAK 74174 0OPT=0

DIMENSION IPACK(3),I1I(4)

READ*, (I(J),J=1,4)
IPACK(N)=SHIFT(I(4),45).0R.SHIFT(I(3),30).0R.
X SHIFT(1(2),15).0R.1(1))

730 ~--
INTEGERS? 4 8 12 1

INTEGERS? 25 6 14 31

— Initiate execution.

INTEGERS? 18 14 7 10

*T #17, END IN L.9 =

Input three sets of integers.

?
END PAK
20300 MAXIMUM EXECUTION FL.
.104 CP SECONDS EXECUTION TIME.

Program terminates.

display,ipack,o0,3-=

IPACK = 00001 00014 00010 00004
" +2 = 00012 00007 00016 00022
2quit

DEBUG TERMINATED

00037 00016 00006 00031

Display three words of array IPACK in octal format,
showing packed integers.

Figure 3-20. Program PAK and Debug Session lllustrating DISPLAY Command

Following are some examples of assignment commands:
A=B

Replaces the current contents of A by the current
contents of B.

M=N+I-1

Evaluates the expression using the current
contents of N and I and assigns the value to M.

ARR(D=X(D*X(D)+4./3.%(Y +Z)*2.

Evaluates the expression using the current values
of X, I, Y, and Z and assigns the value to the Ith
word of ARR. :

STR=CHARA(1:3)/ /CHARB(4:6)

Evaluates the character expression and assigns
the result to STR. STR, CHARA, and CHARB
must be type character.

Figure 3-21 shows a program and debug session illustrating
the assignment command. The program calculates the
mean of 10 numbers. The. program contains a bug: the
statement AV=SUM*10.0 should be AV=SUM/10.0.

60484100 A

To enable the program to execute correctly, a breakpoint
is set at the PRINT statement. When execution is
suspended at this location, the program has already
calculated an incorrect value for AV. The assignment
command is then used to calculate the correct value of
AV. The new value is used in the subsequent PRINT
statement when execution is resumed. The erroneous
statement must be replaced by the programmer in the
corrected version of the source program.

Some additional examples of assignment commands are
illustrated in the examples at the end of this section.

MOVE COMMAND

The MOVE command moves data from one program
location to another. In most cases, you should use the
assignment command to replace the value of a variable by
the value of another variable. However, the assignment
command can only move one data item at a time, and the
move is limited to the home program. The MOVE
command allows you to move large blocks of data, such as
in arrays and common blocks. In addition, the MOVE
command can transfer data between program units. The
MOVE command has the form:

MO VE,source,destination,n

3-21

PROGRAM AVG
DIMENSION X(10)

SUM=0.0

PO 12 1=1,10

SUM=SUM+X (1)
12 CONTINUE

AV=SUM%10.0

-
OV ~NGCWVHFEWN-=

-
~N =

END

CYBER INTERACTIVE DEBUG

PROGRAM AVG 74/74 OPT=0

DATA X/1.0,15.3,2.4,12.7,6.0,
* 5.5,10.1,9.4,4.8,2.0/

PRINT 100, (X(I1),1=1,10),AV

100 FORMAT (' NUMBERS: ',10F5.2,/' MEAN: ',F5.2)

?set,breakpoint, .10 -

790

Set breakpoint to suspend execution at PRINT statement.

*B #1, AT L.10 =

Execution suspended.

7print* , av ==

692.

Display value of AV.

Calculate correct value for AV.

?2av=sum/10.0--

7print , av -

6.92

Display new value of AV.

Resume execution.

790 ——-—-

NUMBERS: 1.0015.30 2.4012.70 6.00 5.5010.10 9.40 4.380 2.00

Program prints new value of AV.

MEAN: 6.92-=
*T #17, END IN L.12
]
END AVG
16700 MAXIMUM EXECUTION FL.
.264 CP SECONDS EXECUTION TIME.
quit

DEBUG TERMINATED

Figure 3-21. Program AVG and Debug Session Hlustrating Assignment Command

where source and destination are array or common block
specifications (as described in table 3-1) and n is an
optional item count. This command moves n items from
successive locations starting with the first word of source
to successive locations starting with the first word of
destination. If n is omitted, one data item is moved. The
item count n should not exceed the dimensioned size of
either the source or the destination arrays.

To move data between arrays within the home program,
specify the array names for the source and destination
options. For example:

MOVE,A,B,10
moves the contents of the first ten words of array A to the

corresponding locations in array B; both A and B must be
defined in the home program.

3-22

To specify a starting location other than the first word of

the source or destination arrays, use the familiar

subscripting notation of FORTRAN. For example:
MOVE,ALPHA(10),BETA(2),100

moves 100 data items from successive locations starting

with word 11 of array ALPHA to successive locations

starting with word 2 of array BETA.

To move data to or from an array in a program unit other
than the home program, use the qualification notation:

P.prog_arr

where prog is the program unit name, and arr is the array
name. For example:

MOVE,P.SUBX_BUF,P.SUBY_DAT(100),50

60484100 A

moves 50 data items from successive locations starting
with the first word of array BUF in program unit SUBX to
successive locations starting with the hundredth word of
array DAT in program unit SUBY.

When moving data to or from a common block, you must

specify the starting location of the block by using the
notation:

C.blk_n
where blk is the common block name and n is the (n+1)th
word of the block. Thus, the first word of the common
block is indicated by a value of zero for n, the second word
is indicated by a value of 1, and so forth.
Examples:

MOVE,BCOM_0,P.FOX_AR,3

Moves 3 data items from successive locations
starting with the first word of common block

BCOM to successive locations starting with the
first word of array AR in program unit FOX.

MOVE,C.BCOM_1,C.ZCOM_9,50

Moves 50 data items from successive locations
starting with the second word of common blocik
BCOM to successive locations starting with the
tenth word of common block ZCOM.

Data can also be moved to or from blank common (C.) or
extended memory (XC.blk). Note that a common block
specification is independent of the home program; that is,
a common block specified in a MOVE command need not
be defined in the home program.

Figure 3-22 shows a sample program and debug session
illustrating the MOVE command. The program consists of
a main program MOVDAT and a subroutine SUBI.
MOVDAT defines three arrays and a common block,
initializes the common block, and calls SUBl. SUBL adds
the values in array X to the values in array Y, and stores

PROGRAM MOVDAT T4/74 OPT=0

PROGRAM MOVDAT

COMMON /BLKA/ A,B,C(5),D0(3) ,EC1D)
DIMENSION RC10),5(10),TC10)

DATA A,B,C,D,E/3.14,0.16,5%0.0,2.41,8.36,

4.0,10%

N=10
CALL suB1 (N
END

NV NN =
*

SUBROUTINE S

PO 100 I=1,N
ZCI)=X(I)+Y(
RETURN

END

100

OOV H LN =

CYBER INTERACTIVE DEBUG

DIMENSION X(N),Y(N),Z(N)

?set,breakpoint,p.subl_L .3 ~e——————— Set breakpoint at line 3 of subroutine SUB1.

790 -

*B #1, AT P.SUB1_L.3 ==

print*,'x= ', ,x," y= ',y--=

X= -1 -1 -1 -I -1 -1 -1 -1 -1 -1 Y=

?move,c.blka_0,x,10

?move,c.blka_10,y,10—=

?printx,'x= ',x,' y= ',y

X= 3.14 .16 0. 0. 0. 0. O.

2.

2.41 8.36 4. Y= 2. 2. 2. 2. 2. 2. 2. 2. 2.

7go —=
*T #17, END IN P.MOVDAT_L .9
2

END MOVDAT

12400 MAXIMUM EXECUTION FL.
.643 CP SECONDS EXECUTION TIME.

2.0/

LR,S,T)

uBl (N,X,Y,2)

I

Initiate execution.

Execution suspended at line 3 of SUB1.

Display values of arrays X and Y; values are meaningless because X and Y
have not been initialized.

-I -1 -1 -1 -1 -1 -1 -1 -1 -1

Move 10 words from BLKA to X, starting at word 1 of BLKA.

Move 10 words from BLKA to Y, starting at word 11 of BLKA.

Display values of X and Y.

Resume execution.

Program runs to completion.

Figure 3-22. Program MOVDAT and Debug Session lllustrating MOVE Command

60484100 A

3-23

the results in array Z. If the program were allowed to run
to completion, it would produce meaningless results
because the arrays R and S, input to SUB1, are not
initialized. In the debug session, the MOVE command is
used to move data from the common block to the
uninitialized arrays so that the computation will yield valid
results.

Initially, a breakpoint is set at line 3 of SUBl so that
execution is suspended before the addition is performed.
When execution is suspended, the PRINT command shows
that arrays X and Y contain meaningless values. The
MOVE command is then used to move the first ten values
in common to X, and the next ten values to Y. The PRINT
command shows that X and Y now contain valid values.

DISPLAYING CID AND PROGRAM
STATUS INFORMATION

The following paragraphs describe some CID features and
commands that allow you to obtain various kinds of
information about the current debug session. These
features include:

e Debug variables that contain useful information about
the current session; the values of these variables can
be displayed at the terminal

® LIST commands that can display such things as load
map information, and trap and breakpoint information

DEBUG VARIABLES

CID provides variables that contain information about the
current status of a debug session and of the executing
program. You can display the contents of debug variables
whenever you have control. CID updates these variables,
and you cannot alter their contents directly.

Although the debug variables are primarily intended for use
by assembly language programmers, some of them can
provide information useful to FORTRAN programmers.
Those variables that are most useful to FORTRAN
programmers are listed in table 3-4. Refer to the CID
reference manual for a description of other debug variables.

TABLE 3-4. DEBUG VARIABLES

Variable Description

#LINE Number of FORTRAN line executing at
time of suspension.

#PC Previous contents; on STORE trap,
#PC contains the value previously
stored in the trapped variable.

#HOME Home program name (P.name).

#BP Number of existing breakpoints.

#TP Number of éxisting traps.

#GP Number of existing groups.

3-24

The #LINE variable contains the number of the FORTRAN
source line that was executing at the time of suspension.
The form of the line number is P.name L.n, where the
Underscore () indicates a relative address in a program
module or common block. CID normally prints this for you
automatically when a trap or breakpoint occurs, but you
might wish to display the value yourself at times,
especially when using command sequences.

The #HOME variable contains the name of the current
home program. The form of this name is P.name. This
variable is useful for programs that contain multiple
program units. Note that the program name displayed by
the #HOME variable might be different than the program
name displayed by the #LINE variable since the home
program can be changed by the SET,HOME command.

The #PC variable can be displayed after execution has
been suspended by a STORE trap. #PC contains the
previous value of the variable and can be displayed only
when CID is in interpret mode. However, since the STORE
trap automatically activates interpret mode, it is not
necessary to enter a SET,INTERPRET command befoare
displaying this variable.

The #BP, #TP, and #GP variables contain the numbers of
breakpoints, traps, and groups, respectively, currently
defined for the debug session. These variables are
especially useful for longer, more complex debug sessions.

To display the contents of a debug variable, you must use
the DISPLAY command; debug variables cannot be
displayed with the PRINT command or LIST,VALUES
command. All variables except #PC are automatically
displayed in the appropriate format. Since #PC contains a
numeric value, you should specify the desired format on
the DISPLAY command. Octal format is the default.

Example:
DISPLAY,#LINE

Displays the current source line number in the
form P.name L.n.

A debug session using debug variables is ilustrated in figure
3-23. The program executed to produce this session is
shown in figure 3-7. In this example, two breakpoints and a
STORE trap are defined. While execution is suspended, the
DISPLAY command is used to display the values of various
debug variables. Note that when #PC is displayed, the F
option is specified so that the values are displayed in
decimal format.

LIST COMMANDS

The LIST commands allow you to list various types of
information relevant .to the current debug session or to
your program. The LIST commands are summarized in
table 3-5.

The LIST commands are particularly useful with longer
debug sessions in which you are constantly changing the
status of the session. For example, you can initially set
some traps or breakpoints, clear some or all of them later
in the session, and set new ones; or you can change output
options several times during the course of a session. With
the LIST commands you can keep track of this and other
CID information. The LIST,BREAKPOINT and LIST,TRAP
commands are described earlier in this section; the
LIST,GROUP command is described in section 4.

60484100 C

CYBER INTERACTIVE DEBUG
?set,breakpoint,Ll.5

?set,breakpoint,p.area_L.2
?go

*B #1, AT L.5
?display,#home —e—

#HOME = P.RDTR
?go

*B #2, AT P.AREA_L.2
?set,trap,store,a

INTERPRET MODE TURNED ON
?display, #bp =

#BP = 2

?display,#tp

#TP = 1
?display,#home ==

H#HOME = P.AREA
?go

*T #1, STORE INTO A (OF P.RDTR) IN L.6

?2display,#line ==

HLINE = P.AREA_L.6

?display,#pc, f =

HPC = -]—=

?clear,breakpoint,#2
?go

*T- #1, STORE INTO A (OF P.RDTR) IN L.6

?display,#pc, f--=

#PC = 2.4142135623731
?

Display name of current home program.

Display current number of breakpoints.
Display current number of traps.

Display name of current home program.

Display number of line where execution is suspended.

Display previous contents of changed variable in floating
point format.
Variable A contained meaningless value.

Display previous contents of changed variable in floating
point format.

Figure 3-23. Debug Session lllustrating Debug Variables

TABLE 3-5. LIST COMMANDS

Command Description

LIST,BREAKPOINT Lists breakpoint information.

LIST,TRAP Lists trap information.
LIST,GROUP Lists command group informa-
tion.)
LIST,MAP Lists load map information.
LIST,STATUS Lists information about cur-

rent status of debug session.

LIST,VALUES Lists names and values of

user-defined variables.

60484100 A

Some of the LIST commands can produce a large volume of
output. It is possible to prevent this output from appearing
at the terminal and to write it, instead, to a separate file
that can then be printed. The commands to accomplish
this are described later in this section under Control of
CID Output.

LIST, MAP Command

The LIST,MAP command displays load map information.
This command is useful when the FORTRAN program
contains many subroutine calls or common blocks, since it
provides a concise list of subroutine and common block
names. The LIST,MAP command can also provide length
information which is useful in detecting incorrectly-
specified common block lengths. This command has the
following forms:

LIST,MAP

Lists all modules (program units and common
blocks) in the user field length. The list includes
FORTRAN library modules as well as user-defined
modules.

LIST,MAP,P.namej},P.namey, .. . ,P.namep
Lists the first word address (FWA), length (octal

words), and all entry point names for the specified
program units.

LIST,MAP,C.namej,C.namey, . ..,C.nameg

Lists the first word address and length (octal
words) of the specified common blocks.

Common blocks are enclosed in slashes in LIST,MAP output.
Figure 3-24 illustrates a debug session for a program in
which two common blocks are declared. An incorrect
dimension is specified for common block ACOM in

subroutine BAKER. The LIST,MAP command displays the
correct length as declared in the main program.

LIST,STATUS Command

The LIST,STATUS command displays a brief summary of
the status of a debug session as it exists at the time the
command is issued. This command has the form:

LIST,STATUS

Information displayed by the LIST,STATUS command
includes:

e Home program name.

e Number of breakpoints currently defined.

e Number of traps currently defined.
e Number of groups currently defined.
e Veto mode on or off.

e Interpret mode on or off.

e Output options. Output options are controlled by the
SET,OUTPUT command, described under Control of
CID Output, which specifies the types of CID output
sent to the terminal.

e Auxiliary file options. These options are specified by
the SET,AUXILIARY command (described later in this
section), which defines an auxiliary output file and
specifies the type of output to be sent to that file.

Figure 3-25 illustrates LIST,STATUS commands entered
during a debug session. The command is issued at the
beginning of the session and again when execution is
suspended at a breakpoint. The output indicates the
changes in the status of the debug session.

CONTROL OF CID OUTPUT

The output produced by commands such as LIST,
TRACEBACK, DISPLAY, and PRINT can become
voluminous. As an alternative to displaying all CID output
at the terminal, CID provides commands that enable you to
prevent specific types of CID output from being displayed

00100 PROGRAM ABLE

00110 COMMON /ACOM/ AC10) ,AAC10)
00120 COMMON /BCOM/ B(50),8B(100)
00130 CALL BAKER

00140 END

00150¢

00160 SUBROUTINE BAKER

00170 COMMON /ACOM/ X(25)

00180 COMMON /BCOM/ Y(1)

00190 o0 6 1=1,25

00200 6 x(1)=0.0

00210 po 8 1=1,150

00220 8 Y(1)=0.0

00230 RETURN

00240 END

CYBER INTERACTIVE DEBUG
? Llist,map user programs

?

pbBUG., ABLE, /ACOM/, /BCcom/, BAKER, FORSYS=, /05.10./
/AP.10./, /FCL.C./, / FCL=ENT/, Q5RPV= Q5NTRY=, /STP.END/
CHMOVE=, FCL=FDL, FORUTL=, GETFIT=, SYSAID=, CPUCPM, CPU.SYS
CMF.ALF, CMF.CSF, CMM.FFA, CMF.FRF, CMF.GSS, CMM.MEM, CMM.R
CMF.SLF, FDL.RES, /FbL.COM/, FDL.MMI, UCLOAD, CTLSRM, CTLSWR
ERR$RM, LISTSRM, RM$SYS=
? List,map,c.acom--= Display starting address and length of ACOM.
BLOCK - ACOM, FWA = 32428B, LENGTH = 24B-== Correct length is 24B, or 20 0
? List,map,c.bcom-= Display starting address and]ength of BCOM.
BLOCK - BCOM, FWA = 32668, LENGTH = 2268B

Figure 3-24. Program ABLE and Debug Session lllustrating LIST,MAP Command

3-26

60484100 A

at the terminal, and to define an output file and specify
the types of CID output to be written to the file. These
commands are as follows:

SET,0UTPUT

Specifies the types of output to be displayed at
the terminal.

SET,AUXILIARY

Defines an auxiliary output file and specifies the
types of output to be sent to the file.

TYPES OF OUTPUT

For purposes of the SET,OUTPUT and SET,AUXILIARY
commands, CID output is classified as to type, with each
type represented by a one-letter code. The output codes,
along with a description of each code, are listed in
table 3-6.

TABLE 3-6. CID QUTPUT TYPES
Output Code Description
E Error messages.
W Warning messages.
D Output produced by execution of

CID commands. Includes output
produced by LIST, DISPLAY, PRINT,
and TRACEBACK commands.

I Informative messages. Includes
trap and breakpoint messages.
R Group and file command sequences;
output when a READ command is
v executed.
B Trap and breakpoint body command

sequences; output when a trap or
breakpoint with a body is
encountered.

T Echo of user-input information.

SET,OUTPUT COMMAND

The SET,OUTPUT command specifies the types of output
to be displayed at the terminal. The SET,OUTPUT
command has the form:

SET,OUTPUT, ty,ts, ... ,t7
where t; is one of the output codes listed in table 3-6.

Including an output code in the option list of the
SET,OUTPUT command causes the associated output type
to be displayed at the terminal. Omitting an output code
from the option list suppresses the associated output type.
Thus, when a SET,0OUTPUT command is specified, any
output type not included in the option list is not displayed
at the terminal. For example, the command:

SET,OUTPUT,E,W,I

causes output types E, W, and I to be displayed at the
terminal while it suppresses types D, R, and B.

When the list is omitted, the default options are E, W, D,
and I for Interactive Jobs, and E, W, D, , R, B, and T for
Batch Jobs. If a SET,OUTPUT command is not entered,
these output types are displayed at the terminal. It is
unnecessary to specify type T in a SET,OUTPUT command
since all user input is displayed at the terminal when it is
entered.

The only output types not automatically displayed are
group and file command sequences (type R) and trap and
breakpoint bodies (type B). To display this output, in
addition to the default types, enter the command:

SET,0UTPUT,E,W,LD,R,B

If you specify the R option on the SET,OUTPUT command,
whenever a READ command is executed, the command
sequence is displayed at the terminal. If you specify the
B option, whenever a trap or breakpoint for which you have
defined a body is detected, the commands comprising the
body are displayed. Command sequences are discussed in
section 4.

The only output types that cannot be suppressed are the
informative messages issued when traps or breakpoints are
detected (these are included in type I). These messages
are always displayed, regardless of SET,0UTPUT
specifications. Error messages (type E) can be suppressed
only if you have provided for writing them to an auxiliary
file with the SET,AUXILIARY command. If you attempt to
suppress error messages and you have not provided for
writing them to an auxiliary file, CID issues an error
message.

CYBER INTERACTIVE DEBUG
? list,status
HOME = P.MAIN,
INTERPRET OFF,

[]

°

[

? list,status
HOME = P.NEWT,

INTERPRET ON,
?

NO BREAKPOINTS,

2 BREAKPOINTS,

OUT OPTIONS = I W E D,

NO TRAPS, NO GROUPS, VETO OFF
AUXILIARY CLEAR
1 TRAPS, NO GROUPS, VETO OFF

OUT OPTIONS = I W E D,

AUXILIARY CLEAR

Figure 3-25. Debug Session illustrating LIST,STATUS Command

60484100 C

3-27

If you suppress warning messages by omitting W from the
SET,OUTPUT command, CID executes all commands that
would normally generate a warning message. No user
prompt is issued; CID takes the corrective action described
in the warning message, responding as if you had entered a
YES or OK response (described earlier in this section under
Error and Warning Processing).

To suppress all output to the terminal (except trap and
breakpoint messages), you can issue either a SET,OUTPUT
command with no option list or the command:

CLEAR,QUTPUT

Prior to entering either of these commands, however, you
must provide for writing error messages to an auxiliary file.

After a CLEAR,OUTPUT command has been issued, you
can restore output to default conditions with the command:

SET,OUTPUT,EW,D,I

The SET,OUTPUT command can be used in conjunction
with the SET,AUXILIARY command to suppress certain
types of output to the terminal and to send that output
type to an auxiliary file. The most common output to
suppress is type D, output produced by execution of CID
commands. This includes output produced by the LIST and
display commands, all of which can produce large amounts
of output.

SET,AUXILIARY COMMAND

The SET,AUXILIARY command defines an auxiliary output
file and specifies which types of CID output are to be
written to that file. The SET,AUXILIARY command has
the following form:

SET,AUXILIARY,lfn,t1,t9, - . « st7

where Ifn is the name of the auxiliary file and t, is one
of the output codes listed in table 3-6.

The SET,AUXILIARY command has no effect on output
that is being displayed at the terminal. For example, the
command:

SET,AUXILIARY,FAUX,I,D

creates a file named FAUX and writes all informative and
command output messages to the file. These messages are
also displayed at the terminal unless the appropriate
SET,OUTPUT command has been used to suppress these
output types.

The option specifications for an auxiliary file can be
changed simply by entering another SET,AUXILIARY
command that specifies file name and a new option list; it
is not necessary to close the file beforehand.

Only one auxiliary file can be in use at a time. The QUIT
command closes the auxiliary file currently in use. To
close an auxiliary file before the end of a debug session,
enter the command:

CLEAR,AUXILIARY

An auxiliary file can be closed at any time during a debug
session.

After you close an auxiliary file, you can dispose of it in

any manner you wish by displaying it at the terminal,
sending it to a printer, or storing it on a permanent storage

3-28

device. CLEAR,AUXILIARY does not rewind the file;
after issuing a CLEAR,AUXILIARY you can issue a
SET,AUXILIARY for the same file in the same or in a
subsequent session, and the additional information is
written after the end-of-record.

A common use of the SET,AUXILIARY command is to
preserve a copy of a debug session log. For example, the
command:

SET,AUXILIARY,0UTF,E,W,D,I,T

issued at the beginning of a debug session, writes the
output types E, W, D, I, and T to file OUTF, thus creating a
copy of the session exactly as displayed at the terminal.
Note that user commands are automatically echoed at the
terminal. However, when outputting to an auxiliary file,
you must specify the T option to include user-entered
commands in the file.

The following example illustrates a SET,OUTPUT command
used in conjunction with a SET,AUXILIARY command to
suppress output to the terminal and write it to an auxiliary
files

2SET,0UTPUT,EW,I
?SET,AUXILIARY,LGF,D
2LIST,MAP
?CLEAR,AUXILIARY
2SET,0UTPUT,EW,I,D

This example suppresses all output produced by CID
commands (type D), creates an auxiliary file called LGF to
which this output is to be written, writes load map
information to LGF, closes LGF, and resets output options
to original conditions. '

The following example illustrates a CLEAR,OUTPUT
command used with a SET,AUXILIARY command:

2SET,AUXILIARY,AUXF,D,E
2CLEAR,OUTPUT

2LIST, V ALUES
2CLEAR,AUXILIARY
?SET,OUTPUT,EW,D,I

This example defines an auxiliary file named AUXF to
receive error messages and output from CID commands,
turns off output to the terminal (except for trap and
breakpoint messages), writes program variables and
contents to AUXF, closes AUXF, and restores terminal
output to normal default conditions.

An example of a debug session using an auxiliary file is
illustrated in figure 3-26. This session was produced by
executing subroutine AREA (figure 3-4) under CID
control. In this example, an auxiliary file AFILE is
defined; the D option causes output from CID commands to
be sent to AFILE. A breakpoint is set at line 7 of
subroutine AREA, and output to the terminal is
suppressed. (Note, however, that the breakpoint message
still appears.) On each pass through subroutine AREA, the
breakpoint suspends execution, and LIST,VALUES is
entered to write all variable names and values to the
auxiliary file. After the third pass through AREA, normal
output conditions are restored, the value of the variable A
is displayed, and the session is terminated. File AFILE
(figure 3-27) contains the output from the LIST,VALUES
command. (A better way of doing this would be to include
the SET,OUTPUT and LIST,VALUES commands in a
breakpoint body. This would preclude the necessity of
reentering these commands on each pass through the
subroutine. Breakpoint bodies are described in section 4.)

60484100 A

CYBER INTERACTIVE DEBUG

?set,breakpoint,p.area_L.7

?2clear,output -

?set,auxiliary,afile,d, e -.«——————— Establish auxiliary file AFILE and send all command output and error

messages to this file.

?7go

*B #1, AT P.AREA_L.7
?list,values,p.area

?go0

*B #1, AT P.AREA_L.7
?list,values,p.area

?go

*B #1, AT P.AREA_L.7
?list,values, p.area

?7g0

*B #1, AT P.AREA_L.7

Suppress output to terminal.

List variables and values while execution is suspend on each pass through
subroutine AREA. Output is written to AFILE.

?set,output, e, w,d, ==

—

Restore normal output to terminal.

2printx a-—=-

33.705
?2quit

DEBUG TERMINATED

Display value of A. This value is also written to AFILE.

Figure 3-26. Debug Session |

llustrating SET,AUXILIARY, SET,OUTPUT, and CLEAR,OUTPUT Commands

*B #1, AT P.AREA_L.7
P.AREA

A =2.0, s$1=2.0, Ss2
T = 3.4142135623731, X1
Y2 = 0.0, Y3 = 2.0

*B #1, AT P.AREA_L.7
P.
A

T

.75, s1 = 1.118033988
2.0161237755615, X1 =
Y2 = 2.0, Y3 = 2.0
*B #1, AT P.AREA_L.7
P.AREA
A = 23.700000000001, S1
$3 = 11.428473213864, T
X3 = 3.2, Y1 =2.0, Y2
*B #1, AT P.AREA_L.7
33.705

CYBER INTERACTIVE DEBUG

2.0 $3 2.8284271247462

’ = First
0.0, X2 =2.0, X3 =0.0, Y1 =0.0 pass
7499, S2 = 1.4142135623731, S3 = 1.5 Second pass
0.0, X2 = .5, X3 =-1.0, Y1 = 1.0
8.4852813742386, S2 = 5.7801384066474 .
12.846946497375, X1 = 6.1, X2 = .1 ~——— Third pass

= =4.0, Y3 = 7.0

60484100 A

Figure 3-27. Listing of Auxiliary File AFILE

3-29

INTERACTIVE INPUT

Programs receiving input from the terminal can be
executed under CID control. A program that is to receive
input from the terminal should be written in such a way as
to differentiate between a program request for input and a
CID request for input. Likewise, you should have some
method of distinguishing program output from CID output.
This is particularly important when you are running
programs under NOS since the system automatically inserts
a ? prompt (identical to the CID prompt) at the beginning
of a line to indicate a program request for user input.

Examples of debug sessions for programs that receive input
from the terminal are illustrated in figures 3-28 (NOS) and
3-29 (NOS/BE). Program ATR reads the coordinates of the
vertices of a triangle and calculates the area of the
triangle. Files INPUT and OUTPUT are used so that input
and output can be performed through the terminal. .
Immediately before the READ is executed, a WRITE
statement displays two asterisks (**) to indicate that the
program is waiting for user input. Input data is then
entered on the same line as the asterisks. After the final
calculation, a WRITE statement displays a message and the
calculated area.

The NOS session is more complicated because the
system-issued ? prompt is identical to the CID prompt.
The two successive asterisks, however, identify the
subsequent ? character as being issued by NOS and not
by CID.

DEBUGGING EXAMPLES

The following paragraphs present some examples of
interactive debugging using the commands described in this
section.

SAMPLE PROGRAM CORR

The program entitled CORR reads pairs of numbers and
calculates the correlation coefficient of the numbers. The
source listing is shown in figure 3-30.

The correlation coefficient is a means of measuring the
degree of statistical correlation between two sets of
numbers. The formula for the correlation coefficient is:

nIXy-IxYy
r=
. \/1z:x2-(zx)2 \/ nZy2-(Zy)2
r Correlation coefficient.
n Number of pairs to be correlated.

X,y Values to be correlated.

The correlation coefficient can have any value between -1
and 1. A coefficient with a magnitude close to 1 indicates
close correlation.

The program in figure 3-30 contains a number of bugs. The
program compiles successfully, but does not run to
completion.

00100 PROGRAM ATR

00110 10 PRINT*, ' %% !

00120 READ (*,%,END=999) X1,Y1,X2,Y2,X3,Y3
00130 ST=SQART((X2-X1)**2 + (Y2-Y1)**2)
00140 S2=SQRT((X3-X1)**2 + (Y3=-Y1)**2)
00150 S3=SQRT((X3-X2)**2 + (Y3-Y2)**2)
00160 T=(S1+52+53)/2.0

00170 A=SQRT(T*(T-S1)*(T-S2)*(T-53))
00180 PRINT*, ' AREA IS ',A

00190 GO TO 10

00200 999 sToP

00210 END

CYBER INTERACTIVE DEBUG

? set,breakpoint,l.170 =

Set breakpoint at line 170.

? go ==

Initiate execution.

p—
. k%

Program writes asterisks.

2/1.0 2.4 -5.1 0.4 -2.2 0.3

System issues prompt. _~User enters input data.

*B #1, AT L.170~

? print*,s1,s2,s3

pu—3

6.419501538282 3.534119409414 2.942787793912

Execution suspended at line 170.

? go

Resume execution.

AREA IS 1.375 =
*k

7 -

Program writes output.

User enters carriage return to indicate end-of-input.

"%T #17, END IN L.200—=
? quit

SRU 7.175 UNTS.

RUN COMPLETE.

Program terminates.

Figure 3-28. Program ATR and Debug Session lllustrating Interactive Input Under NOS

3-30

60484100 A

PROGRAM ATR
10 PRINT*, ' %% '

S1=SQRT ((X2-X1)**2 + (Y2-Y1)*%x2)
S2=SQRT ((X3-X1)%**2 + (Y3-Y1)*x2)
S3=SQRT ((X3-X2)**2 + (Y3-Y2)#*%x2)
T=(S1+52+53)/2.0

A= SQRT(T*(T=-S1)*(T-S2)*(T~53))
PRINT*x, ' AREA IS ' A

VXN WUWN =

READ (*,*,END=999) X1,Y1,%X2,Y2,X3,Y3

1n GO TO 10
11 999 STOP
12 END
CYBER INTERACTIVE DEBUG
?set ,breakpoint,l .8 = Set breakpoint at line 8.
2?00 et Initiate execution.
y ‘Program writes asterisks.
**%1.0 2.4 -5.1 0.4 -2.2 0.9 ———— User enters input data.
*B #1, AT L.8 - Execution suspended at line 8.

?print*,s1,s2,s3,
6.4195N1538282 3.5341194009414 2.942787793912

200 - - Resume execution.

AREA IS 1.375 = Program writes output.

*k%e0f - User enters end-of-input indicator.
*T #17, END IN L.3 Program terminates.

?

Figure 3-29. Program ATR and Debug Session lllustrating Interactive Input Under NOS/BE

1 PROGRAM CORR

2 C CORR CALCULATES A CORRELATION COEFFICIENT
3 DIMENSION X(5),Y(5)

4 c

5 C...INITIALIZATION

6 c

7 N=1

8 SUMX=0.0

9 SUMY=0.0

10 SUMXSQ=0.0

11 v SUMXY=0.0

12 [

13 C...READ NUMBERS TO BE CORRELATED

14 c

15 OPEN (UNIT=2,FILE="CORFIL')

16 10 READ (2,*%,END=20) X(N),Y(N)

17 N=N+1

18 GO TO 10

19 - ¢

20 C...CALCULATE CORRELATION COEFFICIENT
21 c

22 20 IF (N.EQ.D) THEN

23 PRINT*,' EMPTY INPUT FILE'

24 ELSE ‘

25 D0 30 I=1,N

26 SUMX=SUMX+X (1)

27 SUMY=SUMY+Y (1)

28 SUMXSQ=SUMXSQ+X (L) **2

29 SUMYSQ=SUMYSG+Y (I)**2

30 SUMXY=X (I)+Y(I)

31 30 CONTINUE

32 : NUM= (N*SUMXY-SUMX*SUMY) % %2

33 DENOM= (N*SUMXSQ-SUMX*%2) * (N*SUMYSQ-SUMY*x2)
34 -~ RSQ=NUM/DENOM

35 R=SQRT (RSQ)
36 PRINT 800,R
37 800 FORMAT (' CORRELATION COEFFICIENT = ',F6.2)
38 ENDIF
39 _ CEND

60484100 A

Figure 3-30. Program CORR Before Debugging

3-31

To execute the program, some test data is required. If
possible, test cases for which results are known should be
included. In the example in figure 3-30, the first test case
consists of pairs of equal numbers; if the program is
correct, it should calculate a correlation coefficient of 1.0.

The strategy for the first debug session is to allow the
program to execute as far as possible, and to then use
information obtained during this session to determine
where to set traps and breakpoints for subsequent sessions.

The first debug session is shown in figure 3-31. No traps or
breakpoints are set; GO is entered to initiate program
execution, and the program is allowed to execute until
termination, at which time the ABORT trap gives control
to the user. The trap message indicates that an execution
error has occurred. (Error 04 is caused by a computation
involving an indefinite operand.)

Commands can now be entered to determine the cause of -
the errors. The PRINT command displays the contents of
the array X, into which input values are stored. Note that
only 5 values are displayed. (The X array is
dimensioned 5.) This indicates a possible error because the
input file contains ten sets of values. The next PRINT
command, which uses an implied DO loop, indicates that
the subscript might have exceeded the dimensioned size

of X. Since the program contains no check on the number
of records read, this permits an array bounds error to occur
if the number of records exceeds the size of the array.
When the program is corrected, a test on the number of
records read will be included; but, in order to continue the
debug session, the extra records are removed from the
input file, and the program is rerun.

The second debug session is shown in figure 3-32.
Abnormal termination occurs again at line 29. Since
execution terminated within the loop, the values of I
and N, along with some intermediate values, are printed.
Although the data file contains only five records, the
counter N has a value of 6. This causes another indexing
error. By referring to the source listing, you can see that
N is initialized to 1 and is incremented after each record is
read; N will always contain a value of one greater than the
actual number of records read.

The counter can be corrected by initializing it to O instead
of 1. The CID output also shows that SUMYSQ contains an
indefinite value. This is caused by failure to initialize
SUMYSQ to 0. Without changing the source code and
recompiling, debugging can continue by conducting another
debug session and using assignment commands to insert the
correct values for N and SUMYSQ.

Input Data:
1.0 1.0
10.0 10.0
7.6 7.6
2.9 2.9
5.1 5.1
33
100.5 100.5
7.0 7.0
Session Log:

CYBER INTERACTIVE DEBUG
700

! Initiate execution.

*T #18, ABORT CPU ERROR EXIT 04 IN L.29 —=— Abort trap at line 29.

2printx , x—=

100.5 7. 7.6 2.9 5.1

Display input values.

2print*,(x(i),i=1,n) ==

*WARN - SUBSCRIPT OUT OF RANGE
0K ?quit

DEBUG TERMINATED

This form of PRINT command
indicates subscript error.

Figure 3-31. Input Data for First Test Case and Debug Session

CYBER INTERACTIVE DEBUG
?go

*T #18, ABORT CPU ERROR EXIT 04 IN L.29-—-«———— ABORT trap at line 29.
?2print*,n,i,sumx,sumy,sumxsq,sumysq,sumxy-«——— Display intermediate values.

N exceeds array boundary.

4

6 1 1. 1. 1. 1 0.
AN

2quit

DEBUG TERMINATED

SUMYSQ contains meaningless value.

Figure 3-32. Second Debug Session

3-32

60484100 A

The third debug session is shown in figure 3-33. When the
breakpoint at line 22 occurs, N is set to 0 and SUMYSQ is
set to 0.0. The GO command resumes execution; this time
the program runs to completion. The value displayed for
R, however, is clearly incorrect. (The correct value is
known to be 1.0.) The next PRINT command shows that all
the data values are being read correctly, and it is known
from the second session that all the intermediate sums are
correctly initialized. Another session will be conducted
with execution suspended at various points within the
computation portion of the program so that the progress of
the calculations can be examined.

The fourth session is shown in figure 3-34. The correct
initial values for N and SUMXY are inserted, as in the
previous session.

The fourth debug session is shown in figure 3-34.
Breakpoints are set at lines 22 and 35, and a STORE trap is

set for the DO control variable I. The STORE trap is set -

to suspend execution on each pass through the loop of
lines 25 through 31, when I is incremented. However,
shortly after execution is initiated an ABORT trap occurs,
indicating that the maximum time limit has been
exceeded. The STORE trap activated interpret mode,
causing the debug session to use too much time.

The session is terminated and a new one is initiated. This
time, a breakpoint, instead of a STORE trap, is set at
line 31. The breakpoint will have the same effect as the
STORE trap; that is, execution will be suspended on each
pass through the loop.

Execution is initiated and correct values are calculated for
N and SUMXY as in the previous session. The display of
intermediate values on each pass through the loop indicates
a possible error: the value of the variable SUMXY should
be increasing on each pass, as more values are added to it.
However, the display shows that this value is not
increasing. The calculation of SUMXY in line 30 is
incorrect; the correct statement is:

SUMXY =SUMXY +X(D*Y(D)

The debug session can be continued by using the assignment
command to calculate and insert the correct value of
SUMXY. First, execution is resumed to allow the loop to
complete. After the last pass through the loop, the correct
value is calculated by appropriate assignment commands.

The next suspension occurs at line 33. The value of RSQ is
printed and is clearly wrong. (The correct value of R is
known to be 1.0; therefore, the square of R should also
be 1.0.) The next step is to examine the values used to
calculate R5Q@: NUM and DENOM. For RSQ to have a
value of 1.0, NUM and DENOM must be equal. However,
the PRINT command shows that NUM and DENOM are not
equal. NUM is implicitly an integer and, when the
floating-point value was stored into NUM, truncation
occurred. When the source program is corrected, the name
NUM will be replaced by a name that is type REAL. The
session can be continued, however, by once again using an
assignment command to calculate the correct value and by
substituting it for the incorrect value. This requires a
temporary location into which the value of the numerator
can be stored. The variable SUMX can be used for this
temporary location since it is not referenced after line 35.
After the numerator is calculated and stored in SUMX, an
assignment command is used to caiculate RSQ. The PRINT
command shows that RSQ now has the correct value.
Execution is resumed at line 35, which calculates the final
result. The program runs to completion and the session is
terminated. The program now appears to execute
correctly.

At this point, it is probably a good idea to incorporate all
the accumulated changes into the source program,
recompile, and rerun the program to verify the
corrections. However, the program should not be
considered completely debugged until it has been tested on
additional sets of input data.

For the next test case, data records are included in which
all the X values are equal. The input file and session log
are shown in figure 3-35. The program runs to completion,
but an error occurs in the SQRT routine and the indefinite
character I is printed for the correlation coefficient. By

CYBER INTERACTIVE DEBUG

?set,breakpoint,l.22 ==
?go

*B #1, AT L.22 -

?2print*,n,sumysq

6 -1

?n=n-1
?sumysq=0.0 }
?go
CORRELATION COEFFICIENT =

*T #17, END IN L.39
?

END CORR

quit

DEBUG TERMINATED

2 .54 -=— Final result is incorrect.

25100 MAXIMUM EXECUTION FL.
.327 CP SECONDS EXECUTION TIME.

Set breakpoint at line 22.

Breakpoint suspends execution at line 22.

Calculate correct values for N and SUMYSQ.

Figure 3-33. Third Debug Session

60484100 A

3-33

CYBER INTERACTIVE DEBUG

?set ,breakpoint, .22 = - Set breakpoint at line 22,
?set,trap,store,i = Set STORE trap for variable I.
INTERPRET MODE TURNED ON

?set,breakpoint, .35 Set breakpoint at line 35.
?go

*T #18, ABORT CP TIME LIMIT IN L.16 <e——— ABORT trap at line 16;
2quit time limit exceeded.

DEBUG TERMINATED
Lgo == Initiate new debug session.

CYBER INTERACTIVE DEBUG
?set ,breakpoint,Ll.22

?set,breakpoint, .31 = ‘ : Set breakpoint at line 31,
instead of STORE trap.

?set ,breakpoint,L.35
?7go
*B #1, AT L.22

2n=n-1 Calculate correct values for
—— N and SYMYSQ.

?sumysq=0.0
?go

*B #2, AT L.31
?2print*,i,sumx,sumy,sumxsq,Sumysq,Ssumxy

1 1. 1. 1. 1. 2.
?go

*B #2, AT L.31
?print*,i,sumx,sumy,sumxsq,sumysq,sumxy

2 11. 11. 101. 101. 20. . .
2g0 > Breakpoint suspends execution

0N each pass through loop;
display intermediate values

*B #2, AT L.31
! while execution is suspended.

?print*,i,sumx,sumy,sumxsq,sumysq,sumxy

3 18.6 18.6 158.76 158.76 15.2
?go

*B #2, AT L.31
?print*,i,sumx,sumy,Sumxsq,sumysq,sumxy

4 21.5 21.5 167.17 167.17 5.8
?g90 /

*B #2, AT L.31
?print*,i

5
2sumxy=x(1)*y (1) +x(2)*y(2)
?2sumxy=sumxy+x(3)*y (3)+x(4)*y (4)

- Calculate correct value for
?sumxy=sumxy+x(5)*xy(5) SUMXY.

?2print*, sumxy

193.18
7go

3-34

Figure 3-34. Fourth Debug Session (Sheet 1 of 2)

60484100 A

*B #3, AT L.35
?2print*,num,denom

'3 Value of NUM is incorrect.
66739 66739.555600002
?2sumx=(n*sumxy-sumx*sumy)*(n*sumxy-sumx*sumy)-=— Calculate correct value for

numerator, using SUMX for

?2printx, sumx ' temporary storage.
66739.555600002 Calculate correct value
?rsg=sumx/denom for RSQ.

?2print*,rsq

1.
?go

CORRELATION COEFFICIENT = 1.00 - Program prints correct result.
*T #17, END IN L.39 .
2

END CORR

24600 MAXIMUM EXECUTION FL.

3.140 CP SECONDS EXECUTION TIME.

quit

DEBUG TERMINATED

Figure 3-34. Fourth Debug Session (Sheet 2 of 2)

Session Log:

CYBER INTERACTIVE DEBUG
?2go

ARGUMENT INDEFINITE

FTN - INFORMATIVE ERROR NUMBER 39 .

TRACEBACK INITIATED BY SYSERR AT REL(ABS) ADDRESS 122(21407). —=— System error messages.
CALLED BY SQRT AT ADDRESS 1(3574) WITH NO AP-LIST. .
CORRELATION COEFFICIENT = I - Final result is meaningless value.

*T #17, END IN L.40
2

END CORR
24600 MAXIMUM EXECUTION FL.
.149 CP SECONDS EXECUTION TIME.
print*,rsq,anum,denon
I RSQ contains meaningless vatue.
I 0. 0.
2quit

DEBUG TERMINATED

Figure 3-35. Input Data for Second Test Case and Debug Session

60484100 A 3-35

using CID commands to display intermediate values, you
can see that a division by zero has occurred. CID has
helped determine the location of the error, but in order to
understand why the error occurred, it is necessary to
understand the mathematics of the program.

In the formula for the correlation coefflment, it can be
shown that the calculation nZx2- (£x)2 has a value of
zero if all the x values are equal. Whenever a division
occurs within a program, you should always be alert to the
possibility of a zero denominator and include statements
testing for that possibility.

To complete the debugging process, two more test cases
are run: one in which the data correlates closely
(figure 3-36), and one in which the values are widely
scattered (figure 3-37). The results of both tests appear to
be correct. In a real situation, correctness of the results

should be verified whenever possible by comparing them

with known results or by performing hand calculations.
The final version of CORR, with all corrections included, is
shown in figure 3-38.

Input Data:

10.1 10.1
20.5 20.5
6.0 6.0
34.0 32.9
4.4 4.5

Session Log:
CYBER INTERACTIVE DEBUG
?go

CORRELATION COEFFICIENT = 1.00
*T #17, END IN L.40
2

END CORR

25100 MAXIMUM EXECUTION FL.

.136 CP SECONDS EXECUTION TIME.
quit

DEBUG TERMINATED

Figure 3-36. Input Data for Third Test Case
and Debug Session

SAMPLE PROGRAM NEWT
Program NEWT finds a zero root of a function by Newton's
method. Newton's method generates successive
approximations to the equatlon f(x)=0 by applying the
iteration:

Xj+1=xi-F(x;)/ d(x})

where:

f(x;) is the current functional value.

d(xj) is the derivative of the current functional
value.

Xj is the current approximation to the root.

Xj;] is the new approximation to the root.

3-36

Input Data:

0.0
100.0
0.0
500.0
10.0

oooco

0000

Session Log:

CYBER INTERACTIVE DEBUG
?go0

CORRELATION COEFFICIENT = .29
END CORR
25100 MAXIMUM EXECUTION FL.
. .142 CP SECONDS EXECUTION TIME.
*T #17, END IN L.40
2quit

DEBUG TERMINATED

Figure 3-37. Input Data for Fourth Test Case
and Debug Session

The program listing is shown in figure 3-39.

To use Newton's method, you start with an initial
approximation and apply the preceding scheme to calculate
a new and better approximation. You then substitute the
new approximation into the relation and calculate a still
closer approximation. Each successive approximation is
closer to the desired root. The process is continued until
the desired degree of accuracy is achieved.

The program to implement Newton's method consists of a
main routine, a subroutine to apply Newton's method, and
two function subprograms: F, which defines the function
to be solved, and D, which calculates the derivative of the
function.

The main program passes an initial approximation of the
solution to subroutine NEWT, along with the function
names. NEWT intializes an error flag IER and a variable
ITS that contains the current number of iterations. The
iterative scheme is applied in lines 400 through 480. If the
initial approximation itself is a zero root, control returns
to the main program. A zero derivative generates an
error; therefore, a test is included for a zero value of the
function D. Line 440 calculates a new approximation X.
Line 410 tests the functional value FX of the current
approximation; if FX has a value of zero, control returns to
the main program. This type of test, as will be shown in
the debug session, can lead to difficulty when used with an
iterative scheme.

Subroutine NEWT returns the value of the solution (X), the
number of iterations required (ITS), and the error
flag (IER).

The function to be solved, defined in lines 550 through
590, is:

f(x)=3.0x-(x+1.0)/(x-1.0)
The derivative of the function, lines 610 through 670, is:

d(x)=3.0+2.0/(x-1.0)2

60484100 A

PROGRAM CORR 74/74 OPT=0

1 PROGRAM CORR

2 C CORR CALCULATES A CORRELATION COEFFICIENT
3 DIMENSION X(5),Y(5)

4 c

5 C...INITIALIZATION

6 c

7 n=0t

8 sumMx=0.0

9 SuUMY=0.0

10 SUMXSQ@=0.0
11 sumMysa=0.ot
12 SUMXY=0.0

13 c

14 C...READ NUMBERS TO BE CORRELATED

15 c

16 OPEN (UNIT=2,FILE='CORFIL')

17 10 READ (2,%,END=20) X(N+1), v(N+1ﬂ
18 N=N+1

19 IF (N.GT.5) THENT

20 PRINT*, ' TOO MUCH INPUT. LIMIT IS 5 PAIRS®
21 ELSE

22 60 TO 10

23 ENDIF

24 c

25 C...CALCULATE CORRELATION COEFFICIENT
26 c

27 20 IF (N.EQ.0) THEN

28 PRINT*, ' EMPTY INPUT FILE'
29 ELSE

30 0 30 I=1,N

31 SUMX=SUMX+X (1)

32 SUMY=SUMY+Y (1)

33 SUMXSQ=SUMXSQ+X (1) %%2

34 SUMYSQ=SUMYSQ+Y (1) **2

35 SUMYY=SUMXY+X (1) *Y (I)T

36 30 CONTINUE

37 ANUM= (N*SUMXY-SUMX*SUMY) *#2
38 DENOM=(N*SUMXSQ@-SUMX**2) * (N*SUMYSQ-SUMY*%2)
39 IF (DENOM.EQ.0.0) THENT

40 PRINT*, ' BAD INPUT®

41 ELSE

42 RSQ=ANUM/DENOMT

43 PRINT 800, R

44 800 FORMAT (' CORRELATION COEFFICIENT = ',F6.4)
45 ENDIF

46 ENDIF .

47 END

TIndicates correction.

Figure 3-38. Program CORR With Carrections

The debug session for subroutine NEWT is shown in
figure 3-40. A STORE trap for the variable X would be
useful since it would suspend execution after each new
approximation is stored into X. However, the first
attempt to set the STORE trap generates an error
message: a subprogram argument cannot be referenced
before the subprogram is called. The trap can be
established by first setting a breakpoint at the beginning of
the subroutine, then setting the trap while execution is
suspended at that breakpoint.

The first SET,BREAKPOINT command generates an error
message because line 380 is outside the home program and
the program qualifier was omitted from the line number
specification. The command is then reentered with the
correct specification. When execution is suspended at
line 380, the STORE trap is successfully established.

60484100 A

The first store into X occurs in line 400. The LIST
VALUES command shows that all variables have been
correctly initialized, except for the variables FX and DX
which are not initialized until later in the program. Note
that the parameters D and F are not displayed because
they are external function names.

The next suspension is caused by an ABORT trap at
line 410. This line contains a function reference. Error 00
indicates an illegal branch was attempted. (Error codes
are described in appendix C.) An illegal branch can be
caused by a missing subprogram or an incorrectly specified
subprogram name. In this example, the error is in the
CALL statement in the main program. The function name
F is misspelled FF, and therefore is not passed to NEWT.
The function reference resulted in an illegal branch.

3-37

00100 PROGRAM MAIN

00110 EXTERNAL F,D

00120 x0=0.0

00130 CALL NEWT(FF,D,X0,X,ITS,IER)

00140 IF(IER.NE.O) THEN

00150 PRINT*,' ERROR IN SUBROUTINE NEWT'
00160 ELSE

00170 PRINT 100, ITS,X

00180 100 FORMAT (* CONVERGENCE IN ',I4,' ITERATIONS. X= ',E12.4)
00190 ENDIF

00200 END

0o0210¢C

00220c¢ SUBROUTINE NEWT FINDS A ZERO ROOT OF AN EQUATION BY
00230C NEWTONS METHOD .

00240C

00250¢C INPUT

00260C F NAME OF FUNCTION DEFINING EQUATION TO BE SOLVED
00270c¢C D NAME OF FUNCTION DEFINING DERIVATIVE OF EQUATION
00280¢C X0 INITIAL APPROXIMATION TO ROOT

00290C

00300C OUTPUT

00310¢C X SOLUTION TO F(X)=0

00320¢C ITS NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE
00330¢C IER ERROR FLAG

00340cC 0 NO ERRORS

00350¢C 1 ERRORS

00360C

00370 SUBROUTINE NEWT(F,D,X0,X,1TS,IER)

00380 IER=0

00390 1Ts=0

00400 X=X0

00410 10 FX=F(X)

00420 IF (FX.EQ.0.0) RETURN

00430 pX=D(X)

00440 IF (DX.EQ.0.0) THEN

00450 PRINT *('' DERIV= 0 AT '',F6.2,'' SPECIFY DIFFERENT X0'*")'
00460 IER=1

00470 RETURN

00480 ELSE

00490 X=X-FX/DX

00500 ITS=ITS+1

00510 GO TO 10

00520 ENDIF

00530 END

00540cC

0o550¢C F DEFINES A FUNCTION TO BE SOLVED BY NEWTONS METHOD
00560C

00570 FUNCTION F(X)

00580 IF(X.EQ.1.0) STOP "BAD ARG TO F*
00590 F=3.0*X-(X+1.0)/(X-1.0)

00600 RETURN

00610 END

00620C

00630cC D CALCULATES THE DERIVATIVE OF F
00640C

00650 FUNCTION D(X)

00660 IF(X.EQ.1.0) STOP 'BAD ARG TO0 D'
00670 D=3.0+2.0/(X+1.0)*x%*2

00680 RETURN

00690 END

Figure 3-39. Subroutine NEWT and Main Program Before Debugging

The debug session is continued by using an assignment The next suspension occurs when a new value is stored into

command to calculate the correct value for FX. Execution X in line 490. The value is printed and execution is

is then resumed at line 420. resumed. On the next iteration, the ABORT trap again
. occurs at line 410. A new value for FX is calculated and

Note that when execution is resumed after an ABORT trap, displayed. The STORE trap is removed to

-a line number must be specified in the GO command to unnecessary suspensions. Execution is again resumed at

avoid executing the system error code. line 420.

3-38

CYBER INTERACTIVE DEBUG
? set,trap,store,p.newt x -

*ERROR - PARAMETER REFERENCED BEFORE FIRST SUBROUTINE CALL

Attempt to set STORE trap fails.

? set,breakpoint,l.380 ==

? go

*WARN = LINE 380 NOT EXECUTABLE - LINE 200 WILL BE USED
0K ? set,breakpoint,p.newt_L.380 —e————- Set breakpoint at line 380 of NEWT.

Attempt to set breakpoint fails.

Breakpoint detected at line 380 of NEWT.

*B #1, AT P.NEWT_L.380 —=

? set,trap,store,x -
INTERPRET MODE TURNED ON
ked go :

? Llist,values,p.newt
P.NEWT
bX = -I,

? go

FX = -1, IER = 0, ITS

? fx=3.0%x-(x+1.0)/(x~1.0) -

.*T #1, STORE INTO X (OF P.MAIN) IN L.400-=— STORE trap suspends execution in line 400.

*T #18, ABORT CPU ERROR EXIT 00 IN L.470-=e— ABORT trap in line 410.

Set STORE trap for variable X.

0, X =0.0, X0 =20.0

Calculate correct value of FX.

? print*,/fx
1.
? go,Ll.420 -

Resume execution at line 420.

? print*,x
-.2
? go

? fx=3.0%x-(x+1.0)/(x-1.0) =

*T #1, STORE INTO X (OF P.MAIN) IN L.490--w— STORE trap suspends execution in line 490.

*T #18, ABORT CPU ERROR EXIT 00 IN L.410-=— ABORT trap suspends execution in line 410.

Calculate new value for FX.

? print*x, fx
6.6666666666666E-02
? clear,trap,store --

Remove STORE trap.

INTERPRET MODE TURNED OFF
? go,L.420

? fx=3.0%x-(x+1.0)/(x=-1.0)

? printx,fx
1.9032332033941E-02

? go,Ll.420

? fx=3.0%x-(x+1.0)/(x-1.0)

? print*, fx
5.6719259568219€E-03

? go,L.420 .

? fx=3.0%x-(x+1.0)/(x-1.0)

? print*, fx
1.7103829132736E~-03

? go,L.420

? fx=3.0%x-(x+1.0)/(x=-1.0)
? print*, fx,its --=

*T #18, ABORT CPU ERROR EXIT 00 IN L.410 \
*T #18, ABORT CPU ERROR EXIT 00 IN L.410
*T #18, ABORT CPU ERROR EXIT 00 IN L.410

*T #18, ABORT CPU ERROR EXIT 00 IN L.410

ABORT trap occurs on each pass through
loop. Each time execution is suspended,
calculate a new value for FX, display the
value, and resume execution.

ITS contains the current number of

5.1756717224194E-04 5

iterations.
Terminate session.

?7 quUit —-
SRU 14.185 UNTS.

RUN COMPLETE.

Figure 3-40. Debug Session for Subroutine NEWT

The process of calculating a value for FX and resuming
execution at line 420 is repeated for subsequent iterations,
until the value of F X appears to be converging to a solution.

After a few passes through the loop, the solution appears
to be correctly converging to zero. However, the test to
exit from the loop is satisfied only if FX is equal to zero.
If FX does not eventually become equal to zero, an infinite
loop results. For this reason, you should avoid testing a
calculated value for strict equality.

60484100 A

To prevent an infinite loop, the test for convergence must
be changed to exit on a sufficiently small value of FX. The
constant used for the test depends on the desired degree of
accuracy; for example, for 3-place accuracy, a value of
.0001 is used. A limit should also be imposed on the
number of passes through the loop, since the method might
not converge for certain functions. The loop can be
replaced with a DO loop with an arbitrary limit of 100
passes. The corrected version of the program is shown in
figure 3-41.

3-39

00100 PROGRAM MAIN

00110 EXTERNAL F,D

00120 X0=0.0

00130 CALL NEWT(F,D,X0,X,ITS,IER)
00140 IFC(IER.NE.O) THEN

00150 PRINT*,' ERROR IN SUBROUTINE NEWT'

00160 ELSE

00170 PRINT 100, ITS,X

00180 100 FORMAT (' CONVERGENCE IN ',I4,' ITERATIONS. X= ',E12.4)
00190 ENDIF

00200 END

00210¢

00220C SUBROUTINE NEWT FINDS A ZERO ROOT OF AN EQUATION BY

00230C NEWTONS METHOD

t

00240¢C

00250¢c INPUT

00260C F NAME OF FUNCTION DEFINING EQUATION TO BE SOLVED
goz7oc D NAME OF FUNCTION DEFINING DERIVATIVE OF EQUATION
00280¢C X0 INITIAL APPROXIMATION TO. ROOT

00290cC

00300¢c¢ OUTPUT

00310¢C X SOLUTION TO F(X)=0

00320¢C ITS NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE
00330¢C IER ERROR FLAG

00340cC 0 NO ERRORS

00350¢C 1 ERRORS

00360¢C

00370 SUBROUTINE NEWT(F,D,X0,X,ITS,IER)
00380 IER=0

00390 1TS=0

00391 EPs=0.0001!

00400 X=X0

00401¢

00402¢ ITERATE TO FIND ROOT

00403¢C

00410 0 10 I=1,100"

00411 FX=F(X)

00420 IF (FX.LE.EPS) RETURN'

00430 DX=D(X)

00440 IF (DX.EQ.0.0) THEN

00450 PRINT '('' DERIV= O AT '',F6.2,'' SPECIFY DIFFERENT XD'')"
00460 IER=1

00470 RETURN

00480 ELSE

00490 X=X-FX/DX

00500 ITS=ITS+1

00520 ENDIF

00521 10 CONTINUE

00522 PRINT*,' METHOD HAS NOT CONVERGED IN 100 ITERATIONS®
00523 IER=1

00524 RETURN

00530 END

00540¢

00550C F DEFINES A FUNCTION TO BE SOLVED BY NEWTONS METHOD
00560¢

00570 FUNCTION F(X) :
00580 IF(X.EQ.1.0) STOP 'BAD ARG TO F'
00590 F=3.0%X-(X+1.0)/(X-1.0)

00600 RETURN

00610 END

00620¢ v

00630C D CALCULATES THE DERIVATIVE OF F
00640¢C

00650 FUNCTION D(X)

00660 IF(X.EQ.1.0) STOP 'BAD ARG TO D'
00670 D=3.0+2.0/(X+1.0)**2

00680 RETURN

00690 END

T

Tlndicates corrections.

Figure 3-41. Subroutine NEWT and Main Program With Corrections

3-40 60484100 A

AUTOMATIC EXECUTION OF CID COMMANDS 4

“

In many cases, you will find it necessary to enter the same
command or sequence of commands repeatedly during the
course of a debug session. This type of situation is
illustrated in the debugging examples of section 3. In the
debug session for subroutine NEWT (figure 3-40 in
section 3), the same sequence of commands is needed on
each pass through the DO loop. Debugging program CORR
required several debug sessions (figures 3-31 through 3-37
in section 3). During each session, it was necessary to
reenter the assignment commands that calculated the
correct intermediate values. Reentering complicated
assignment commands in this manner can be a
time-consuming process.

To eliminate the need for repeatedly entering sequences of
commands, CYBER Interactive Debug (CID) provides the
ability to define, save, and automatically execute
sequences of commands. This feature can be used to
improve debugging efficiency whenever the same group of
CID commands must be entered repeatedly. Automatic
command execution is commonly used when debugging DO
loops and frequently-called subroutines, and in muitiple
debug sessions that require the same commands. In
addition, CID provides some special sequence commands
that allow you to incorporate FORTRAN-like logic into
command sequences. For example, sequence commands
allow branching and conditional execution of CID
commands.

COMMAND SEQUENCES

A command sequence is a series of CID commands which is
to be executed automatically either when certain
conditions occur or when you enter the appropriate
command from the terminal. .

There are three ways to establish a command sequence:

e By defining a command sequence as part of a trap or
breakpoint. This causes the sequence to be executed
whenever the trap or breakpoint occurs. A sequence
defined in this manner is called a trap body or
breakpoint body.

e By defining a command sequence called a group. A
group is executed by issuing a READ command from
the terminal or from another command sequence.

e By creating a file, outside of CID, which contains a
sequence of CID commands. The commands in this
file are executed by issuing a READ command at the
terminal, or from another command sequence.

During normal execution, CID prompts for user input after
a command is executed. During sequence .execution,
however, CID executes all the commands in the sequence
without interruption. Once execution of the sequence is
completed, execution of your program resumes at the point
where it was suspended. You do not get control during
sequence execution unless you provide for it using the
PAUSE command, described later in this section.

Command sequences can be nested; that is, command
sequences can be called from other command sequences.

60484100 C

COLLECT MODE

Collect mode is a mode of execution in which CID
commands are not executed immediately after they are
entered, but are included in a command sequence for
execution at a later time. To define a trap body,
breakpoint body, or command group, you must first
activate collect mode. The procedure for entering and
leaving collect mode is described under Traps and
Breakpoints With Bodies.

Commands in a sequence that you are creating cannot be
altered while CID is in collect mode. If you make a
mistake or wish to change a command that you have
entered, you must leave collect mode and proceed as
described under Editing a Command Sequence.

MULTIPLE COMMAND ENTRY

You can enter more than one comrnand on a single line, but
not exceeding 150 six bit characters in a line. The
commands are separated with a semicolon, as in the
following example:

PRINT*,X;SET,BREAKPOINT,L.25;G0O

In interactive mode, CID does not execute the commands
until you press the RETURN key; it then executes the
commands in the order you entered them. In collect made,
the commands are not executed, but are included in the
command sequence.

This method of command entry is especially convenient
when you are defining command sequences because you
don't have to wait for an input prompt before entering each
command. This technique is illustrated later in this section.

SEQUENCE COMMANDS

CID provides a set of commands intended specifically for
use with command sequences. These commands are
summarized in table 4-1.

TRAPS AND BREAKPOINTS
WITH BODIES

A body is a sequence of commands specified as part of a
SET,TRAP or SET,BREAKPOINT command. To define a
trap or breakpoint with a body, you must first initiate
collect mode by including a left bracket () as the last
parameter of the SET,TRAP or SET,BREAKPOINT
command. For example: !

SET,TRAP,LINE,P.MAIN

The bracket and the preceding parameter must not be
separated by a comma; the blank separator is optional.

When the above command is entered, CID displays the
message and prompt:

IN COLLECT MODE
?

TABLE 4-1. SEQUENCE COMMANDS

Command Description

PAUSE Temporarily suspends execution of
the current command sequence and
reinstates interactive mode
allowing commands to be entered
from the terminal.

MESSAGE Displays a message at the terminal.
GO Resumes the process most recently

: suspended.

EXECUTE Resumes execution of the user
program.

IF Performs conditional execution of
commands.

LABEL Defines a label within a command
sequence.

JWMP Transfers control within a
command sequence to a label
defined by a LABEL command.

READ Initiates execution of a command
sequence defined as a group or
stored on a file; reestablishes
trap, break point, and group
definitions stored on a file.

You then enter the commands that are to comprise the
body. Each command entered while CID is in collect mode
becomes part of the body. CID scans the command for
errors but does not execute the command. You can include
any number of commands in a body, although command
sequences should be kept short and simple.

To leave collect mode and return to interactive mode,
enter a right bracket (]) in response to the ? prompt or at
the end of a command line. CID then displays:

END COLLECT MODE
?

and you can continue the session.

An example of a breakpoint definition with a body is as
follows:

SET,BREAKPOINT,L.8[
X=0.0

Y=Y+1.0

PRINT#*,X,Y

Note that this command sequence can also be entered as
follows:

SET,BREAKPOINT,L.8 [X=0.0;Y=Y +1.0;PRINT*,X,Y]

When a trap or breakpoint with a body is encountered,
program execution is suspended and the commands in the
body are executed automatically. Program execution then
resumes at the trap or breakpoint location; CID does not
give control to you upon completion of the sequence.

When a trap or breakpoint with a body is encountered
during execution, the normal trap or breakpoint message is
not displayed. However, you can provide your own
notification of the execution of a trap or breakpoint body
by including a MESSAGE command (table 4-1) in the
sequence. The format of the MESSAGE command is:

MESSAGE,'character string'

When a MESSAGE command is encountered, the character
string is displayed, and execution of the sequence
continues. (You do not get control after execution of a
MESSAGE command).

You do not receive control during execution of a sequence
unless you have provided for it by including a PAUSE
command (described under Receiving Control During
Sequence Execution) in the body. When the body has been
executed, execution of your program automatically
resumes at the location where it was suspended.

An example of the procedure for establishing a breakpoint
body is illustrated in figure 4-1. The program used in this
example is shown in figure 3-4 in section 3. A breakpoint
is established at the RETURN statement in subroutine
AREA. The breakpoint body contains the following
commands:

e A MESSAGE command to display a message at the
beginning of the sequence.

e A DISPLAY command to display the contents of the
#LINE variable which contains the current line number.

o A PRINT command to display the input values and the
value of A.

Subroutine AREA is called four times; each time the
breakpoint is detected, the commands in the sequence are
executed.

DISPLAYING TRAP AND
BREAKPOINT BODIES

You can display a list of the commands in a breakpoint
body by specifying the breakpoint location in the following
LIST,BREAKPOINT commands:

LIST,BREAKPOINT,locy,locy, . . . Jlocn
Displays the complete definitions, including the
bodies (if any), of the breakpoints at statements
locy, locz,...; locj has one of the forms
S.n, L.n, P.prog_S.n, or P.prog_L.n.
LIST,BREAKPOINT,#n1,#n2, « « « Ny
Displays the complete definitions, the bodies (if
any), of the breakpoints having numbers nj,
N2, ...5Nm; breakpoint numbers are assigned
by CID when the breakpoints are established.

Other forms of the LIST,BREAKPOINT command list the
breakpoint location but not the commands in the body.

Examples:
LIST,BREAKPOINT,#1,#5,#6
LIST,BREAKPOINT,P.SUBC_L.10

60484100 A

To display a list of the commands in a trap body, enter the Example:
following form of the LIST,TRAP command:

LIST,TRAP,#n1,#n2, .« « y,#finp ‘ LIST,TRAP,#2,#5
Displays the bodies (if any) of the traps having :
numbers nj, N2y ...,Nm; the trap numbers lists the type, location, and body of the traps numbered 2
are assigned by CID when the traps are and 3. '
established.
This command displays the trap type, location, and body.
Other forms of the LIST,TRAP command list only the trap Figure 4-2 illustrates a LIST,BREAKPOINT command for
type and location. the breakpoint established in figure 4-1.

CYBER INTERACTIVE DEBUG '
?set,breakpoint,p.area_L.7 [= . Set breakpoint at line 7 of subroutine AREA
. and activate collect mode.

IN COLLECT MODE
?message,'in subroutine area'

Breakpoint body. Commands are included
-=- to display message, current FORTRAN line
number, input values, and final result.

?display,#line
?printx,'input is ',x1,y1,x2,y2,x3,y3

?printx,'area is ',a

?] - - Turn off collect mode.

END COLLECT
790 - . Initiate program execution.

IN SUBROUTINE AREA

#LINE = P.AREA_L.7
INPUT IS 0. 0. 2. 0. 0. 2.
AREA IS 2.

IN SUBROUTINE AREA

#LINE = P.AREA_L.7

INPUT IS 0. 1. .5 2. -1. 1.2 On each pass through subroutine AREA,
AREA IS .55 the breakpoint suspends program execution
IN SUBROUTINE AREA -«— and the commands in the body are
#LINE = P.AREA L.7 executed. After all input records are
INPUT IS 6.1 2. .1 -4. 3.2 7. “processed, the program terminates.

AREA IS 23.7
IN SUBROUTINE AREA
H#LINE = P.AREA L.7
INPUT IS .2 =2.9 -1.3 8. 5.6 2.8
AREA IS 33.705
*T #17, END IN P.RDTR_L.7
29

STOP
20100 MAXIMUM EXECUTION FL.

1.672 CP SECONDS EXECUTION TIME.
quit

DEBUG TERMINATED

Figure 4-1. Debug Session lllustrating Breakpoint With Body

?2list,breakpoint,#1 -e«—— Display the complete definition of breakpoint #1, including the
breakpoint location and all commands in the breakpoint body.
*B #1 = P.AREA L.7
SET,BREAKPOINT,P.AREA_L.7 [
MESSAGE , "IN SUBROUTINE AREA'
DISPLAY ,#LINE
_PRINT*,'INPUT IS °*,X1,Y1,X2,Y2,X3,Y3"
PRINT*,'AREA IS ',A
]

2
H

Figure 4-2. Debug Session lllustrating LIST,BREAKPOINT Command for Breakpoint With Body

60484100 A 4-3

GROUPS

A group is a sequence of commands established and
assigned a name during a debug session, but not explicitly
associated with a trap or breakpoint. A group exists for
the duration of the session and is executed by entering an
appropriate READ command. The command to establish a
group is:

SET,GROUP,name [

where name is a name by which you will reference the
group. The left bracket activates collect mode, as with
trap and breakpoint bodies. Any number of CID commands
subsequently entered become part of the sequence until
you terminate the sequence by entering a right bracket.

The command to execute a group is:
READ,name

where name is the group name assigned in the SET,GROUP
command. You can issue a READ command directly from
the terminal or from another command sequence. In
response to a READ command, CID executes the
commands in the group. After a group has been executed,
control returns to CID (if the READ was entered from the
terminal) or to the next command in the sequence that
issued the READ.

A group can be used when the same sequence of commands
is to be executed at different locations in a program. A
trap or breakpoint body is executed only when the trap or
breakpoint occurs, but a group can be executed at any
time. Following is an example of a simple group definition:

SET,GROUP,GRPA|
X=Y+Z
PRINT*,X,Y,Z

This command sequence is executed by entering the
command:
READ,GRPA

When a group is established, it is assigned a number in the
same manner as traps and breakpoints. You can refer to a
group by number or by name in the LIST, CLEAR, and
SAVE commands.

You can list the commands comprising a group with the
following commands:

LIST,GROUP
Lists the names and numbers of all groups defined
for the current debug session; does not list the
commands contained in the groups.

LIST,GROUP,namej,namey, . . . , Namep,

Lists the commands contained in the specified
groups.

LIST,GROUP,#ny,#n2, ..., #nm

Lists the commands contained in the groups
identified by the specified numbers.

Note that the first command form lists only the names and
numbers of groups, whereas the second and third forms list
the commands comprising the specified groups.

Normally, a group exists for the duration of a debug
session. You can remove existing groups from the current
debug session by entering one of the following commands:

CLEAR,GROUP
Removes all currently-defined groups.
CLEAR,GROUP,name],namey, . . . , Namey,
Removes the specified groups.
CLEAR,GROUP,#n),#n2, . « . y #fnpy

Removes the groups identified by the specified
numbers.

Figures 4-3 and 4-4 illustrate debug sessions using groups.
In figure 4-3, two breakpoints are set in subroutine SETB.
When either breakpoint is reached, the READ command is
issued from the terminal. In figure 4-4, the same
breakpoints are established, except that a body containing
a READ command is defined for each breakpoint. This
causes the body to be executed automatically when the
breakpoints are encountered, with no intervention from the
user. By defining a single group instead of a body for each
breakpoint, it is necessary to enter the command sequence
only once. The group is listed with the LIST,GROUP
command.

In figure 4-4, note that there are three levels of
execution: the program, the breakpoint body, and the
group. When the breakpoint is reached, the program is
suspended, and execution of the breakpoint body is
initiated. When the READ command is encountered,
execution of the breakpoint body is suspended while the
group is executed. When execution of the group is
complete, execution of the suspended breakpoint body
resumes at the command following the READ. When
execution of the breakpoint body is complete, execution of
the suspended program resumes.

Groups are especially useful when the same sequence of
commands is to be executed at more than one location
within a program. An example of this is illustrated in
figure 4-5. The program MATOP defines two matrices and
calls subroutines to add, subtract, and multiply the
matrices and store the results in an array calied MWRK.
The purpose of the debug session is to print the contents of
MWRK after each subroutine call. To accomplish this, a
group named PRNT is defined to contain appropriate
PRINT commands. After each subroutine call, a
breakpoint is set with a body containing a command to
execute the commands in group PRNT. When each
breakpoint is encountered, the group commands are
automatically read and executed. The debug session in
figure 4-6 is identical to figure 4-5 except that the
command READ,PRNT is issued from the terminal instead
of a breakpoint body. Note that when the READ command
is executed in the breakpoint body, program execution
continues after the group commands are executed. When
the READ command is entered at the terminal, control
returns to CID after the group commands are executed,
and program execution must be resumed with a GO
command.

60484100 A

CYBER INTERACTIVE DEBUG
?set,group,grpa [

IN COLLECT MODE
?message,'executing grpa'

?display,#line
?print*,'k= ',k,' b= ',b
7]

END COLLECT

Define group GRPA. Commands are included to
~=— display a message, the current line number, and
the values of the variable K and the array B.

?set,breakpoint,p.setb_Ll.10--«—— Set breakpoint at line 10 of subroutine SETB.

790 —-

Initiate program execution.

*B #1, AT P.SETB_L.10 —e———————— Breakpoint suspends execution at line 10 of SETB.
Execute the commands in GRPA.

?7read,grpa -

EXECUTING GRPA

HLINE = P.SETB L.10

K= 1 B= -1. =1. -1. -1. -1.
290 =

. Resume program execution.

*B #1, AT P.SETB_L.10
?read,grpa

EXECUTING GRPA

HLINE = P.SETB L.10

K= 2 B= 1.1, 1. 1. 1.
2quit

DEBUG TERMINATED

Figure 4-3. Debug Session lllustrating Group Execution Initiated at Terminal

ERROR PROCESSING DURING
SEQUENCE EXECUTION

When CID is in collect mode and you are defining a
command sequence, CID scans each command you enter for
syntactic errors. If a syntactic error is detected, CID
displays an error message followed by a ? prompt, after
which you can reenter the command. Other errors,
however, such as nonexistent line number or variable name,
cannot be detected until CID attempts to execute the
command.

CID issues normal error and warning messages during
sequence execution. When an error or warning condition is
detected, CID suspends execution of the sequence and
issues a message followed by an input prompt (? for error
messages; OK? for warning messages) on the next line.
You then can instruct CID to disregard the command,
replace the command with another command, or, in the
case of warning messages, execute the command. The
ways in which you can respond to error and warning
messages are summarized as follows:

User Response CID Action

OK or YES For warning messages only,
execute the command.

NO Disregard the command.

Execution resumes at the next
command in the sequence.

60484100 A

NO,SEQ Disregard the command and all
remaining commands in the
sequence.

Any CID command Execute the specified command
line in place of the current
command, and resume exe-

cution of the sequence.

An example of error processing during sequence execution
is illustrated in figure 4-7. During execution of group
CGR, CID issues a warning message and two error
messages. After each message is issued, CID gives control
to the user. In response to the warning message, the user
enters a new command to be executed in place of the
incorrect command. In response to the first error message,
the user enters NO, instructing CID to ignore the incorrect
command and resume execution of the sequence. In
response to the second error message, the user enters
NO,SEQ@, instructing CID to disregard the incorrect
command and all remaining commands in the sequence and
to give control to the user.

RECEIVING CONTROL DURING
SEQUENCE EXECUTION

Normally, a command sequence executes to completion
without returning control to CID. There might be
instances, however, when you would like to temporarily
gain control during execution of a sequence for the purpose
of entering other commands. You can do this by using the
PAUSE command.

CYBER INTERACTIVE DEBUG
?set,group,grpa [

IN COLLECT MODE

?message, 'executing grpa’ Define group GRPA. Commands are included to display a
s . ~«——— message, the current FORTRAN line number, and the
*display,#line values of variables K and B.

?printx,'k= ',k,"' b= ',b
21

END COLLECT
?set ,breakpoint,l.6 [

IN COLLECT MODE
?read,grpa

2] Set breakpoints at lines 6 and 8 of home program. Define

~g-———— abody for each breakpoint which contains a READ
END COLLECT command to initiate execution of the commands in GRPA.

?set ,breakpoint,l.8 [

IN COLLECT MODE
?read,grpa

2?1

END COLLECT
?list,breakpoint,#1,#2 —«————— List the definitions of the breakpoints.

*B #1 = L.6

SET,BREAKPOINT,L.6 [

READ ,GRPA

]

*B #2 = L.8

SET,BREAKPOINT,L.8 [

READ ,GRPA

]

790 - Initiate program execution.

EXECUTING GRPA
HLINE = P.PROGY_L.6

K=1 B= 1. 1. =1. =1. =-1. The breakpoints of lines 6 and 8 suspend program
EXECUTING GRPA execution and the READ commands in the bodies
HLINE = P.PROGY L.8 are automatically executed, causing the commands

K= 2 B=1. 1. 1. 1. 1. in GRPA to be executed.

*T #17, END IN L.8
2
END PROGY
12300 MAXIMUM EXECUTION FL.
601 CP SECONDS EXECUTION TIME.
quit

DEBUG TERMINATED

Figure 4-4. Debug Session lllustrating Group Execution Initiated From Breakpoint Body

60484100 A

PROGRAM MATOP 14/74 OPT=0

PROGRAM MATOP

DIMENSION MAT1(3,3) ,MAT2(3,3) ,MWRK(3,3)
DATA MAT1/2,6,4,3,8,9,7,5,8/,
1 MAT2/1,0,0,0,1,0,0,0,1/

N=3

CALL MATADD(N,MAT1,MAT2 ,MWRK)

CALL MATSUB(N,MAT1,MAT2,MWRK)

CALL MATMPY(N,MAT1,MAT2 ,MWRK)

END

NV OONOV P WN =

CYBER INTERACTIVE DEBUG
?set ,group,prnt [

IN COLLECT MODE
?message,'contents of mwrk'

?2display,#line '

«— Define group PRNT. Commands are included to display
2print*,mwrk(1,1) ,mwrk(1,2) ,mwrk(1,3) the values of array MWRK.

2print*, mwrk(2,1) ,mwrk(2,2) ,mwrk(2,3)

?print*, mwrk(3,1) ,mwrk(3,2) ,mwrk(3,3)

2?1

END COLLECT
?2list,group,prnt - Display the definition of group PRNT.

*G #1 = PRNT
SET,GROUP,PRNT [
MESSAGE,"CONTENTS OF MWRK'

DISPLAY #LINE

PRINT* ,MWRK(1,1) ,MWRK(1,2) ,MWRK(1,3)
PRINT* , MWRK(2,1) ,MWRK(2,2) ,MWRK(2,3)
PRINT*,MWRK(3,1) ,MWRK(3,2) ,MWRK(3,3)
]

?set,breakpoint,l.7 C

IN COLLECT MODE
?read,prnt

7]

END COLLECT
?set,breakpoint,L.8 C .
Set breakpoints at lines 7, 8, and 9. In each breakpoint body,
IN COLLECT MODE B include a READ command to initiate execution of the
?read,prnt commands in group PRNT.‘

?1]

END COLLECT
?set,breakpoint,L.9 [

IN COLLECT MODE
?read,prnt

?1]

Figure 4-5. Program MATOP and Debug Session (Sheet 1 of 2)

60484100 A

END COLLECT
?7go

CONTENTS OF MWRK
#LINE = P.MATOP_L.7
357

695

499

CONTENTS OF MWRK
HLINE = P.MATOP_L.8

137

6 75

4 9 7

CONTENTS OF MWRK
HLINE = P.MATOP_L.9

2 37

6 85

4 9 8
*T #17, END IN L.9
”

END MATOP

12600 MAXIMUM EXECUTION FL.

2.020 CP SECONDS EXECUTION TIME.
quit

DEBUG TERMINATED

Initiate program execution.

Breakpoint suspends execution at line 7. READ command is
executed, and control returns to program.

Breakpoint suspends execution at line 8. READ command is
executed.

Breakpoint suspends execution at line 9. READ command is
executed, and program runs to completion.

Figure 4-5. Program MATOP and Debug Session (Sheet 2 of 2)

PAUSE COMMAND

The purpose of the PAUSE command is to suspend
execution of a command sequence. The formats of the
PAUSE command are:

PAUSE
PAUSE,'string’

where string is any string of characters. When CID
encounters this command in a sequence, execution of the
sequence is suspended and CID gets control, allowing you
to enter commands. If string is specified, the character
string is displayed when the PAUSE command is executed.

The PAUSE command is valid only in a command sequence;
it cannot be entered directly from the terminal.

When a PAUSE command is encountered in a trap or
breakpoint body, CID displays the trap or breakpoint
message followed by any message included in the PAUSE
command, and prompts for user input.

Execution of the suspended sequence can be resumed by
either the GO or the EXECUTE command. These
commands are explained in the following paragraphs.

GO AND EXECUTE COMMANDS

The functions of the GO and EXECUTE commands are
identical except when issued following suspension of a
command sequence. When program execution has been
suspended by a trap or breakpoint, both commands resume

program execution. However, when execution of a
command sequence has been suspended, the GO and
EXECUTE commands differ as follows:

o GO resumes execution of the suspended sequence.

o EXECUTE causes an immediate exit from the
sequence and resumes execution of the program.

The debug session in figure 4-8 illustrates the PAUSE and
GO commands. This session was produced by executing
program AREA, shown in figure 3~4 in section 3, under
CID control. The purpose of this session is to suspend
execution at the beginning of the subroutine in order to
display the input values, to change them if necessary, and
to suspend execution at the end of the subroutine in order
to display the calculated area. To accomplish this, a
breakpoint with a body is set at line 2 of subroutine
AREA. Two commands are included in the body: a PRINT
command and a PAUSE command. The PRINT command
displays the input values, and the PAUSE command
suspends execution of the sequence so that the user can
change these values. A STORE trap is then established for
the variable A. A body containing a command to print the
value of A is defined for this trap. On each of the three
passes through subroutine AREA, the commands in the
sequence are executed automatically. When the PAUSE
command is detected on the first pass, the user enters GO
to resume sequence execution. (In this case, GO and
EXECUTE have the same effect since PAUSE is the last
command in the sequence.) On the next two passes through
the subroutine, assignment commands are entered to
change the values of some of the input variables while
sequence execution is suspended because of the PAUSE
command.

60484100 A

C}BER INTERACTIVE DEBUG
?set,group,prnt [

IN COLLECT MODE
?message,'contents of mwrk!®

?display,#line
-=— Define a group to print the values of array MWRK.
?print*,mwrk(1,1),mwrk(1,2),mwrk(1,3) :
?print*, mwrk(2,1),mwrk(2,2),mwrk(2,3)
?print*x, mwrk(3,1) ,mwrk(3,2) ,mwrk(3,3)
?1]

END COLLECT
?set,breakpoint,l.7 ! *

?set,breakpoint,l.8 [—=— Set breakpoints at lines 7, 8, and 9.
?set,breakpoint,Ll.9
?go

*B #1, AT L.7
?read,prnt - Initiate execution of group while execution is suspended at line 7.

CONTENTS OF MWRK
#LINE = P.MATOP_L.7
337

< v

6 9
4 9
790 - Resume program execution.

*B #2, AT L.8
?read,prnt -« Initiate execution of group while execution is suspended at line 8.

CONTENTS OF MWRK

#LINE = P.MATOP L.8

137 -

6 75

497 ;

790 - Resume program execution.

*B #3, AT L.9
?read,prnt = Initiate execution of group while execution is suspended at line 9.

CONTENTS OF MWRK
#LINE = P.HATOP_;.9
2 37
6 85
4 9 8
?2quit

DEBUG TERMINATED

Figure 4-6. Second Debug Session for Program MATOP

60484100 A 4-9

*G #1 = CGR
SET,GROUP,CGR L[
PRINT*,(A(1),1=1,50)
X=1.0

c=2.0

Z=X+Y

PRINT*,'2= ',Z
A(1)=B+C
PRINT*,'AC1)= ',A(1)
]

?2read,Ccgr -

1. 2. 5. 4. 5.

execution.
z= 1.

7Nn0,S€eq -

7 g0 -

*T #17, END IN L.S
2

?list,group,cgr -«———— Display group definition.

Initiate execution of group CGR.

CMD - (PRINT,(A(CI),I=1,50)) *WARN - SUBSCRIPT OUT OF RANGE ~es—————— contains an error.
0K ?printx,(a(i),i=1,5)-— Replace incorrect command with new command and
resume group execution.

*CMD - (C=2.0) *ERROR - NO PROGRAM VARIABLE C -e—— Indicated command contains an error.
7N0 - Disregard erroneous command and resume group

*CMD - (A(1)=B+C) *ERROR - NO PROGRAM VARIABLE C-= Indicated command contains an error.
Disregard erroneous command and all remaining

commands in group. Control returns to CID.

Resume program execution.

Indicated command

Figure 4-7. Debug Session lllustrating Error Processing During Sequence Execution

Both the GO and EXECUTE commands can be used to
resume program execution at a location other than the one
where execution was suspended. The command forms are:

GO,loc

EXECUTE,loc

where loc is a specification of the form L.n or S.n. These
command forms resume execution at the specified
statement. .

The GO and EXECUTE commands can be used to skip
sections of code, as illustrated in figure 4-9. In this
example, the main program passes two values, A and B, to
a subroutine which calculates a value for C. C is then used
in a subsequent calculation. The user wishes to skip the
call to SUB, assigning instead his own value to C. A
breakpoint is set at line4 to suspend execution
immediately before execution of the CALL statement.
When execution is suspended at the breakpoint location, a

value is assigned to C. The user then enters GO,L.5. to

resume execution at line 5, and line 4 is bypassed.

CONDITIONAL EXECUTION OF
CID COMMANDS

CID allows conditional execution of commands in much the
same manner as FORTRAN allows for executable
statements. CID provides an IF command that is similar to
the FORTRAN IF statement and a JUMP command that is
similar to the FORTRAN GO TO statement.

4-10

IF COMMAND

The format of the IF command is:

IF (expr) command
where expr is a relational expression and command is any
valid CID command. If the relational expression is true,

CID executes the command.

The form of a reiational expression is the same as in
FORTRAN. The following relational operators are valid:

LEQ. .GT.
.NE. LE.
LT, .GE.

The following restrictions apply to the IF command:

® Only variables defined in the current home program
can appear.

e CID variables cannot be used.

e Function references and exponentiation are not
allowed.

® Qualification notation is not allowed.

Although the consequent command in an IF can be any
valid CID command, it is usually an assignment, PRINT,
JUMP, or GO command, as in the following examples:

IF(X.GT.Y+Z)PRINT*,'VALUES ARE',X,Y

Prints the values of X and Y if X is greater than
Y+Z.

60484100 A

CYBER INTERACTIVE DEBUG
?set ,breakpoint,p.area_L.2 [

IN COLLECT MODE

?print*,'input is

?pause,'changes?’

2]

END COLLECT

"ox1,y1,x2,¥2,%3,¥3 Mw— Set breakpoint with body at line 2 of AREA.

?set,trap,store,a [

INTERPRET MODE TURNED ON

IN COLLECT MODE

Set STORE trap with body for variable A.

?print*,'area is ',a

2]

END COLLECT

790 - Initiate program execution.

INPUT IS 0. 0. 2. 0. 0. 2. - Breakpoint suspends execution; sequence execution initiated.
*B #1, AT P.AREA_L.2 }__ PAUSE command suspends sequence execution and displays
CHANGES? o message.

790 - Resume sequence execution.
AREA IS 2. == STORE trap initiates execution of trap body.
INPUT IS 0. 1. .5 2.

*B #1, AT P.AREA_L.2

-1. 1.2 } Breakpoint suspends program execution on second pass
- through AREA; PAUSE command suspends sequence
execution.

Assign new values to X1 and X1.

Resume sequence execution.

CHANGES?
?2x1=1.0
?y1=2.0}
2900 -

AREA IS .2

INPUT IS 6.1 2. .1 -4. 3.2 7.
*B #1, AT P.AREA_L.2 Third pass through AREA. Assign new value to
CHANGES? ~&—————— X3 and resume execution.
?x3=4.2 .
?7go

AREA IS 20.7

INPUT IS .2 -2.9 -1.3 8. 5.6 2.8 -

. Fourth pass through AREA. Resume execution.

*B #1 AT P.AREA L.2 —i———— B
CHANGES? — Program runs to completion.
?go

AREA IS 33.705
STOP

20100 MAXIMUM EXECUTION FL.
11.704 CP SECONDS EXECUTION TIME.
*T #17, END IN P.RDTR_L.7

?

60484100 A

Figure 4-8. Debug Session lllustrating PAUSE Command

4-11

PROGRAM EX T4/74 oPT=0

PROGRAM EX

A=1.0

B=2.0

CALL suB(A,B,C)
D=C*%x2+1.0
PRINT*,"VALUES ARE
END

'IAIBICID

NOVISAUWN -

SUBROUTINE suB(X,Y,Z)
Z=X+Y

RETURN

END

HUN =

CYBER INTERACTIVE DEBUG
?set,breakpoint,l.4

?go

*B #1, AT L.&4--=—— Breakpoint suspends execution at line 4 of program EX.
?2¢=4,0 -«—— Assign value to C.

?2go,l .5 -«———— Resume execution at line 5.

VALUES ARE 1.
END EX

15700 MAXIMUM EXECUTION FL.
.147 CP SECONDS EXECUTION TIME.

*T #17, END IN L.7
2

2. 4. 17,

Figure 4-9. Program EX and Debug Session lllustrating GO Command

IF(IFIRST.EQ.1)ZZ=XX*2.0 IF(I.NE.D)GO,S.20

IF IFIRST is equal to 1, the value XX times 2.0
replaces the current value of ZZ.

If the value of I is not equal to zero, exits from
the current sequence and resumes program
execution at statement 20.
F(A(I).GT.0.0)GO,L.50

If the value of A(I) is greater than zero, control F(X+T.LT.Y+S)EXECUTE
transfers to line 50 of the program.
If the value of X+T is less than the value of Y+S,
exits from the current sequence and resumes
program execution.

IF(A(2).NE.B(2))JUMP,L ABL

If the value of A(2) does not equal the value of
B(2), control transfers to the commands following
the label LABL in the current command sequence. The JUMP and LABEL commands are used to transfer
control within a sequence.

Although you can issue an IF command from the terminal,
this command is especially powerful when used in command
sequences. You can use the IF command to perform a test
and conditionally transfer control to another command in
the sequence, or to exit from the sequence. The technique
for doing this is similar to that of FORTRAN. In

JUMP AND LABEL COMMANDS

FORTRAN, a GO TO statement causes a branch to another
executable statement. In CID, the GO or EXECUTE
command is used to exit from the sequence, as in the
following examples:

IF(A.GT.B)GO
If the value of A is greater than the value of B,

exits from the current sequence and resumes
execution of the most recently-suspended process.

4-12

The format of the JUMP command is:

JUMP,name

where name is a label declared in a LABEL command. The
function of the JUMP command is identical to the
FORTRAN GO TO statement. When CID encounters a
JUMP command, control transfers to the command
following the label.

60484100 A

A label is established within a command sequence by the
following command:

LABEL ,name

where name is a string of one through seven letters or
digits. The LABEL command is not executed by CID; its
sole purpose is to provide a destination for a JUMP
command. When a JUMP command is executed, control
transfers to the command following the LABEL command.

The JUMP command can be used in conjunction with the IF
command to perform a conditional branch, as in the
following command sequence example:

IF(X.LT.100.0)JUMP,LAB1
X=0.0

GO

LLABEL,LAB1

X=X+1.0

If the value of X is less than 100.0, 1.0 is added to X and
program execution resumes; if X is not less than 100.0, X is
set to 0.0 and program execution resumes.

A debug session using the IF, JUMP, and LABEL commands
is illustrated in figure 4-10. The program executed to
produce this session appears in section 3 (figure 3-4). The
purpose of this session is to suspend program execution at
the beginning of subroutine SETB and store the value 3.0
into each word of the array B if K is equal to 3. If K is not
equal to 3, execution is to proceed normally. To
accomplish this, a breakpoint with a body is set at line 3 of
SETB. The first command in the body tests K. If K is not
equal to 3, program execution resumes at line 3;
otherwise, execution of the sequence continues. The
remaining commands of the sequence constitute a loop that
stores 3.0 into each word of B. The variable K is used as
an index and counter since it is not required by the
program. When K is equal to the array dimension N,
program execution resumes at line 9. A breakpoint is set
in the main program at the first subroutine call so that K
can be assigned a value of 3.

At this point, you are probably aware that command
sequences using the conditional execution capability can
become quite complicated. You should, however, attempt
to keep sequences short and simple so that you don't spend
more time debugging the sequence than would be required
to debug your program.

CYBER INTERACTIVE DEBUG

IN COLLECT MODE
?2if(k.ne.3)go =

?k=1

?label,a23 -

?b(k)=3.0
?print*,'b(',k,*')="',b(k)
?if(k.ge.ndgo,l.10
2k=k+1

?jump,aaa

2]

END COLLECT
?set,breakpoint,L.5

*B #2, AT L.5
?2k=3

?go
B(1

)=3.

B(2)=3.

B(3)=3. (=
)=3.
)=3.

B(4
B(5
END PROGY
12300 MAXIMUM EXECUTION FL.

?set,breakpoint,p.setb_L.3 [-e—— Set breakpoint at line 3 of SETB and enter collect mode.

If K is not equal to 3, resume program execution.

Define label AAA.

If all elements of B have been set to 3, resume execution
~%—————— at line 10 of SETB; otherwise, increment counter and make
another pass through sequence.

?go ~=——————— Suspend execution at line 5 and assign new value to K.

Breakpoint suspends execution at line 3 of PROGY,
sequence commands execute.

1.968 CP SECONDS EXECUTION TIME.
*T #17, END IN P.PROGY_L .8 ~e——— Program runs to completion.
2

Figure 4-10. Debug Session Illustrating JUMP and LABEL Commands

60484100 A

4-13

COMMAND FILES

In addition to executing command sequences established
within a debug session, you can execute command
sequences stored on a separate file. You can create such a
file using a text editor and include any sequence of CID
commands in the file. Command files can also be created
with the SAVE command (discussed under Saving Trap,
Breakpoint, and Group Definitions). There are two reasons
why you might want to create a separate file of CID
commands:

e By storing commands on a file, you have a permanent
copy of the command sequence that can be used for
future debug sessions.

e Editing a file of commands using a text editor is easier
than editing a sequence of commands in a group or
body while executing under CID control. (See Editing
a Command Sequence.)

To execute the commands in a file, enter the command:
READ,Ifn

where Ifn is the file name. CID reads the file and
automatically executes the commands in the same manner
as for a group. When execution of the commands is
complete, program execution remains suspended, and
control returns to you. To resume program execution,
enter GO.

Executing commands from a file can be time-consuming
since the file must be read each time the command
sequence is executed. If a command sequence is to be
executed many times in a single session, a more efficient
method of executing the commands is to create a command
file containing a SET,GROUP command and to include the
command sequence in the group. When the file is read by
the READ command, the SET,GROUP command is
automatically executed and the command sequence is
established as a group within the debug session. The group
can subsequently be executed without the necessity of
reading the file. For example, if a file containing the
commands:

X1=Y1+Z1
X2=Y2+Z2
PRINT*,X1,X2

is created via a text editor and assigned the name COMF,
the command READ,COMF must be issued whenever the
sequence is to be executed. If, instead, the following file
is created:

SET,GROUP,GRPX [
X1=Y1+Z1
X2=Y2+72
PRINT*,X1,X2

The command READ,COMF reads the file and causes the
SET,GROUP command to be executed, establishing GRPX
for the current session. Thereafter, the command
READ,GRPX executes the commands in the group and the
file COMF is only read once.

The use of text editors under NOS and NOS/BE to create

and edit files containing CID commands is described under
Editing a Command Sequence.

4-14

SAVING TRAP, BREAKPOINT, AND
GROUP DEFINITIONS

As with other CID commands, command sequences exist
only for the duration of the session in which they are
defined. CID provides the capability of saving group, trap,
and breakpoint definitions on a separate file. You can
print this file or make it permanent. There are two
reasons for copying CID definitions to a file:

e To preserve a copy of the definitions for use in the
current or in subsequent debug sessions.

e To make it easier to edit command sequences with the
system text editor.

The command to save CID definitions has the following
forms:

SAVE,BREAKPOINT,lfn,list

Copies to file Ifn the definitions of the
breakpoints specified in list; list is an optional list
of breakpoint locations (S.n or L.n) or breakpoint
numbers (#n) separated by commas. If list is
omitted, all breakpoints are saved.

SAVE,TRAP,Ifn,type,scope

Copies to file Ifn the definitions of the traps of
the specified type defined for the specified
scope. Type and scope are optional and are the
same as for the SET,TRAP command; if they are
omitted, all existing traps are saved.

SAVE,GROUP,lfn,list

Copies to file 1fn the groups specified in list; list
is an optional list of group names or numbers (#n)
separated by commas. If list is omitted, all
groups defined for the current session are saved.

The SAVE command copies the complete definition of the
specified traps, breakpoints, or groups to the specified
file. (The definition of a trap, group, or breakpoint
includes the SET command and any other commands in the
body.)

You can combine trap, group, and breakpoint definitions on
a single file by specifying the same file name for multiple
SAVE commands. A single READ command reestablishes
all the definitions stored in the file. Another way to

combine definitions on a single file is to enter the
command:

SAVE,*,lfn

This command copies all existing trap, group, and
breakpoint definitions to the specified file.

Some examples of SAVE commands are as follows:
SAVE,BREAKPOINT,SBPF
Copies to file SBPF all existing breakpoints.
SAVE,BREAKPOINT,BPFILE,L.10,P.SUBX S.20
Copies to BPFILE the definitions of the

breakpoints established at line 10 of the home
program and statement 20 of subroutine SUBX.

60484100 A

SAVE,BREAKPOINT,FILEA,#2,#5

Copies to FILEA the definition of breakpoints #2
and #5.

SAVE,TRAP,TFILE
Copies to TFILE all existing traps.
SAVE,TRAP,TTT,LINE,P.PROGA

Copies to TTT the definition of the LINE trap
established in program unit PROGA.

SAVE,GROUP,GF IL ,WRT,RDD,GRPX

Copies to GFIL the definitions of the groups
named WRT, RDD, and GRPX.

You can preserve group, trap, and breakpoint definitions
across a system logout by making the SAVE file permanent.

Definitions stored on a file can be altered (as described
under Editing a Command Sequence) and then restored in
the current or in a subsequent session. The command to
restore the definitions stored on a file is:

READ,Ifn

where 1fn is the file containing the definitions. You can
issue a READ command in the current session or in a later
session. If a READ,Ifn is issued in the current session and
the definitions previously saved on Ifn have not been
removed by the appropriate CLEAR command, CID
displays a message of the form:

EXISTING BREAKPOINTS WILL BE REDEFINED
oK?

A positive response (YES or OK) causes the existing
definitions to be redefined according to the information in
the file; a negative response (NO) causes the read
command to be ignored.

Note that the READ command only restores the definitions
stored in the specified file; it does not cause the commands
in the definitions to be executed.

The following READ commands assume that GFIL and TTT
are as defined in the preceding examples: .

READ,TTT

Restores the LINE trap definition contained in
file TTT.

READ,GFIL

Restores the group definitions contained in file
GFIL.

A debug session using the SAVE command is illustrated in
figure 4-11. The program shown in figure 3-4 in section 3
is executed in debug mode to produce this session. A
breakpoint with a body is established in the main program
and in subroutine AREA, after which execution is
initiated. The program reads the three records contained
in TRFILE. On each pass through the program, the
command sequences are executed. After the program

60484100 A

terminates, CID gets control because of the END trap, and
a SAVE,BREAKPOINT command is issued to save the
current breakpoint definitions on the file named AFILE.
The session is terminated, the binary file LGO is rewound,
and a new session is initi'ated. The command READ,AFILE
restores the breakpoints for the new session. The contents
of AFILE are shown in figure 4-12.

The debug sessions in figure 4-13 illustrate the
SAVE,GROUP command using the program shown in
figure 4-5. The command group PRNT, shown in
figure 4-5, is saved on the file named GFILE at the end of
the first debug session. At the beginning of the second
session, the command READ,GFILE restores the group
definition. Breakpoints are set at lines 7, 8, and 9 of
MATOP. When each breakpoint is encountered, the
command READ,PRNT is issued to execute the group.
Note that this command could have been placed in a body
for each breakpoint. The groups would then have been
executed automatically, without user intervention.

EDITING A COMMAND SEQUENCE

If you wish to make a change to a command sequence in a
trap body, breakpoint body, or group, you can remove the
definition with the appropriate CLEAR command and
reenter the entire sequence. This procedure can be
time-consuming for lengthy sequences, however.

CID provides two alternate methods for making changes to
a command sequence:

e You can save the trap, breakpoint, or group definition
on a separate file and edit the file.

® You can turn on veto mode and edit the sequence

interactively. Refer to the CYBER Interactive Debug
reference manual for an explanation of this method.

To apply the first method, you must temporarily exit from
the current debug session.

SUSPENDING A DEBUG SESSION

CID provides the capability of suspending the current
session, returning to system command mode, and resuming
the session at a later time. This feature can be used
whenever you wish to perform a function outside of CID,
but it is especially useful for leaving a session to edit a
command sequence. .

The commands:
SUSPEND
SUSPEND(ifn)

suspend the current debug session, copy information about
the session environment to the specified file, and return
control to the operating system. The information includes
a copy of the executing program and copies of all opened
files, all CID internal tables, and all trap, breakpoint, and
group definitions. In short, the file contains all the
information necessary to continue the debug session. If Ifn
is omitted from the SUSPEND command, the information is
written to a local file named ZZZZZDS.

4-15

First Session: Breakpoint Definitions Saved.

CYBER INTERACTIVE DEBUG
?set,breakpoint,l.5 L

IN COLLECT MODE
?display,#line - Set breakpoint with body at line 5 of main program.

?list,values,p.rdtr
23]

END COLLECT
?set,breakpoint,l.6 = Set breakpoint at line 6 of RDTR.

?set,breakpoint,p.area_L.7 [

IN COLLECT MODE

2print*,'area is ',a ~=— Set breakpoint with body at line 7 of subroutine AREA.
(4 ’ ’

2]

END COLLECT

790 = Initiate program execution.

HLINE = P.RDTR_L.5 = Breakpoint detected at line 5; sequence execution initiated.
P.RDTR

A= -1, X1 = 0.0, X2 = 2.0, X3 = 0.0, Y1 = 0.0, Y2 = 0.0

Y3 = 2.0

AREA IS 2.

*B #2, AT L.6 (OF P.RDTR)-=——— Breakpoint detected at line 6.
?save,breakpoint,afile «<«———— Copy breakpoint definitions to file AFILE.

?2quit

DEBUG TERMINATED

Second Session: Breakpoint Definitions Restored.

CYBER INTERACTIVE DEBUG

?read,afile —= Restore breakpoint definitions contained in AFILE.
‘?list,breakpoint -= List breakpoint locations.

*B #1 = L.5 , %8 #2 = L.6, - *B #3 = P.AREA_L.7
790 - Initiate program execution.

HLINE = P.RDTR_L.5

P.RDTR
A=-I, X1 =0.0, X2-=2.0, X3=0.0, Y1=0.0, Y2=0.0
Y3 = 2.0

AREA IS 2.

*B #2, AT L.6 (OF P.RDTR)
?

Figure 4-11. Debug Sessions lllustrating SAVE Command

4-16 60484100

SET HOME P.RDTR
SET,BREAKPOINT,L.5 [
DISPLAY,#LINE
LIST,VALUES,P.RDTR

]

SET HOME P.RDTR

SET BREAKPOINT L.6
SET,BREAKPOINT,P.AREA L.7 [
PRINT*,'AREA IS ',A

]

Figure 4-12. Listing of File AFILE

The information contained in the file created by a
SUSPEND command is intended for use by CID only; it
should not be accessed directly by the user. This file
preserves the status of a debug session exactly as it existed
when the SUSPEND was executed. The file is a local file;
however, you can make the file permanent, thereby
preserving the debug session after a logout. The saved
debug session can be resumed in a subsequent terminal
session. However, except for sessions involving extremely
long programs, it should rarely be necessary to continue a
debug session over more than one terminal session.

First Session: Group Defined and Saved.

CYBER INTERACTIVE DEBUG
?set,group,prnt [-

Assign group name and activate collect mode.

IN COLLECT MODE
?message,'contents of mwrk'

?print*x,mwrk(1,1),mwrk(1,2),mwrk(1,3)
?print*,mwrk(2,1),mwrk(2,2) ,mwrk(2,3)
?2print* mwrk(3,1) ,mwrk(3,2) ,mwrk(3,3)
23

END COLLECT
?save,group,gfile -

-=—— Group body.

2quit

DEBUG TERMINATED

Second Session: Group Reestablished.

CYBER INTERACTiVE DEBUG
?read,gfile =

Copy group definition to file GFILE.

?list,group =

Restore group definition contained in GFILE.

*G #1 = PRNT
?2list,group,#1 -

List current group names and numbers.

*G #1 = PRNT

SET,GROUP,PRNT L[

MESSAGE,*CONTENTS OF MWRK'
PRINT*,MWRK(1,1) ,MWRK(1,2) ,MWRK(1,3)
PRINT* MWRK(2,1) ,MWRK(2,2) ,MWRK(2,3)
PRINT*,MWRK(3,1) ,MWRK(3,2) ,MWRK(3,3)
1

?set,trap,line,l.7...1.8
?go

*T #1, LINE AT L.7
?read,prnt -

List commands in group #1.

Initiate execution of the commands in PRNT.

CONTENTS OF MWRK
33
69
4 9

oW~

?

Figure 4-13. Debug Session lllustrating READ and SAVE,GROUP Commands

60484100 A

4-17

You should not alter the status of any files used by your
program after you issue a SUSPEND command. If you
perform any file manipulation operations, such as REWIND,
on files used by your program, you might not be able to
restart the session normally.

To resume the suspended debug session, enter one of the
following commands:

DEBUG(RESUME)
DEBUG(RESUME,lfn)

where 1fn is the file name specified in a previous SUSPEND
command. If Ifn is omitted, CID reads file ZZZZZDS. This
command restores the debug session to its status as it
existed at the time of suspension. All trap, breakpoint, and
group definitions are restored, and all program and debug
variables have the values that existed when SUSPEND was
executed.

Remember that the most effective debug sessions are short
and simple. Thus, it will rarely be necessary to use the
SUSPEND/RESUME capability, except to edit command
sequences.

EDITING PROCEDURE

To edit a trap body, breakpoint body, or command group,
proceed as follows:

1. Save the trap, breakpoint, or group definition with the
appropriate SAVE command.

2. Suspend the current session with the SUSPEND
command.

3. Use a text editor to make desired changes to the
command sequence.

4. Resume the session with the DEBUG(RESUME)
command.

5. Remove the old trap, breakpoint, or group definition
with the appropriate CLEAR command.

6. Establish the altered definition with the READ
command.

After a SUSPEND, be sure that you do not modify or
change the position of any files used by your program,
because the DEBUG(RESUME) command does not restore
these to their status at suspension time.

An example of the procedure for editing a command
sequence is shown as performed under NOS/BE
(figure 4-14) and NOS (figure 4-15). The purpose of this
editing session is to change the command Y=2.0 in the
group named AGRP, to Y=3.0. To accomplish this, the
group is copied to file SAVFIL, and the debug session is
suspended.

Under NOS/BE INTERCOM, the command EDITOR calls
the system text editor. The command EDIT,SAVFIL,SEQ
makes SAVFIL the edit file and assigns a sequence number
to each line in the edit file. The command 140=Y=3.0
makes the desired change to line 140 of the edit file. The
edit file is then copied to file NEWFIL and editing is
terminated. Refer to the INTERCOM reference manual
for more information on the INTERCOM text editor.

4-18

Under NOS, the following commands are used to alter
GRPFIL:

EDIT,SAVFIL
Enters edit mode to edit SAVFIL.
PRINT*
Lists the edit file.
NEXT 4
Advances the line pointer 4 lines.
REPLACE
Replaces the current line.
PRINT
Lists the current line.
END
Exits from edit mode.
When editing is complete, the debug session is resumed by
DEBUG(RESUME) and the group is restored by

READ,SAVFIL. Refer to the XEDIT reference manual for
detailed information on XEDIT.

INTERRUPTING AN EXECUTING
SEQUENCE

The INTERRUPT trap, described in section 3, allows you to
gain control at any time during a debug session. If a
command sequence is executing at the .time of the
interrupt, execution of the sequence is suspended and CID
displays the message:

INTERRUPTED
?

You can respond as follows:

User Response CID Action

OK or YES Resumes sequence execution at

the point of the interrupt.
GO or NG,SEQ Disregards all remaining com-
mands in the sequence and
resumes execution of the
program.

Executes the specified com-
mand and resumes execution of
the sequence at the point of the
interrupt.

Any CID command

If CID is in the process of displaying information when the
interrupt occurs, the information remaining to be printed is
lost. A terminal interrupt is therefore an effective means
of stopping excessive CID output.

60484100 A

CYBER INTERACTIVE DEBUG
?set,group,agrp C

IN COLLECT MODE
?message,'executing group agrp*

?display,#line ~<—_ Define group AGRP.
?2x=1.0

?y=2.0

?1]

END COLLECT
?save,group,savfil,agrp - Copy definition of AGRP to file SAVFIL.

?suspend = Suspend dgbug session.

DEBUG SUSPENDED

..edit,savfil,seq == . Make SAVFIL the edit file.

«.list,all -= List edit file.

100=SET,GROUP,AGRP [
110=MESSAGE,"EXECUTING GROUP AGRP'
120=DISPLAY, #LINE

130=X=1.0

140=Y=2.0

150=1]
--140=y=3.0 - Replace line 140.
save,newfil, ,noseq = Copy edit file to NEWFIL.
..debug(resume) —= Resume debug session.

CYBER INTERACTIVE DEBUG RESUMED

?clear,group,agrp - Remove old definition of AGRP.
?read,newfil - Establish new definition of AGRP by reading NEWFIL.
?list,group,agrp--= List definition of AGRP.

*G #1 = AGRP

SET,GROUP,AGRP (

MESSAGE, 'EXECUTING GROUP AGRP'
DISPLAY,#LINE

X=1.0

¥Y=3.0

]

?

Figure 4-14. Editing a Command Sequence Under NOS/BE

60484100 A 4-19

CYBER INTERACTIVE DEBUG

? set,group,agrp [

IN COLLECT MODE

message, 'executing group agrp'
display,#line

x=1.0

y=2.0

?]

END COLLECT

? save,group,savfil,agrp =

D 2D D D

~=—— Define group AGRP.

Copy definition of AGRP to file SAVFIL.

? suspend

Suspend debug session.

SRU 8.979 UNTS.

RUN COMPLETE.
batch -

Enter batch subsystem.

$RFL,0.
/xedit,savfil =

XEDIT 3.0.9
727 print * g

Call XEDIT program to edit SAVFIL.

Print edit file.

SET,GROUP,AGRP L[
MESSAGE,'"EXECUTING GROUP AGRP'
DISPLAY , #L INE

X=1.0

¥Y=2.0

]

END OF FILE

?? next 4 -

Advance line pointer.

¥Y=2.0

??7 replace —=
? y=3.0

?? print
Y=3.0

??7 end -

Replace current line.

Leave edit mode.

SAVFIL IS A LOCAL FILE
/debug(resume) —=

Resume debug session.

CYBER INTERACTIVE DEBUG RESUMED
? clear,group,agrp =

Remove old definition of AGRP.

? read,savfil —-

Establish new definition of AGRP.

- List definition of AGRP.

? Llist,group,agrp—=
*G #1 = AGRP
SET,GROUP_,AGRP L[
MESSAGE,'EXECUTING GROUP AGRP'
DISPLAY,#L INE
X=1.0
¥Y=3.0
]

Figure 4-15. Editing a Command Sequence Under NOS

COMMAND SEQUENCE EXAMPLES

Following are two examples of debug sessions that use
command sequences. The programs CORR and NEWT,
debugged in section 3, are used to illustrate how sequences
can be used to speed up the debugging process. ‘

PROGRAM CORR

The original version of CORR, with errors, is shown in
figure 3-30 in section 3. Several debug sessions were
required to debug the program completely. Commands
issued during one session had to be reentered in subsequent

4-20

sessions. This example demonstrates how this repetition
can be eliminated by including the assignment commands in
trap and breakpoint bodies and saving the trap and
breakpoint definitions on a separate file for use in later
sessions. The example also demonstrates how an
appropriate conimand sequence can be used to simulate the
reading of input data.

The NOS/BE text editor is used to create the three
command files shown in figure 4-16. Each file corresponds
to a test case. The files contain assignment commands
that insert the correct values for SUMYSQ and N and test
values in the arrays X and Y. Two commands, separated

by a semicolon, are included on each line. The files are
named TEST1, TEST2, and TEST3, respectively.

60484100 A

Listing of TEST1:

SUMYSQ=0.0;N=5
X(1=1.0;Y(1)=
CX(2)=10.0;Y(2)
X(3)=7.6;Y(3)=
X€4)=2.9;Y(4)=
X(5)=5.1;Y(5)=

Listing of TEST2:

SUMYSQ=0.0;N=
X€1)=3.0;Y¢1)=1.0
X(2)=3.0;Y(2)=5.1
X(3)=3.0;Y(3r=7.6
X(4)=3.0;Y(4)=10.0
X(5)=3.0;Y(5)=15.0

5

Listing of TEST3:

SUMYS@=0.0;N=5
X(1)=0.0;Y(1)=0.0
X(2)=0.0;Y(2)=100.0
X(3)=0.0;Y(3)=0.0
X(4)=0.0;Y(4)=500.0
X(5)=0.1;Y(5)=10.0

Figure 4-16. Command Files for Program CORR

Ancther file named BPFILE, shown in figure 4-17, is
created using the text editor. This file contains two
breakpoint definitions. The first breakpoint is set at
line 15. The PAUSE command will temporarily suspend
execution of the breakpoint body. The user can then issue
a READ command to execute the commands in TESTL.
The command GO,L.22 will resume program execution at
line 22, skipping the READ statement. The second

breakpoint is set at line 35. The body of this breakpoint.

contains assignment commands to calculate the correct
values for SUMXY and RSQ when the body is executed.

The debug sessions for program CORR are shown in
figure 4-18. One session is conducted for each test case.
At the beginning of each session, the command
READ,BPFILE is issued to establish the breakpoint
definitions, and program execution is initiated. When the
PAUSE command gives interactive control to the user, a
READ command is issued to load the arrays X and Y.
Execution is resumed by the GO command, and the
commands in the sequences are executed automatically. A
LIST,BREAKPOINT is entered in the first session to display
existing breakpoints and bodies.

PROGRAM NEWT

The command sequence capability can be applied to the
debugging of the Newton's method subroutine shown in
figure 3-39 in section 3. Two of the errors in the original
program involved an incorrect function name in the
subroutine call and an incorrect convergence check that
resulted in an infinite loop. The CID commands to correct
these errors can be placed in a breakpoint body, as shown
in figure 4-19. The sequence includes commands to
calculate the correct functional value FX, print the
functional value and current number of iterations, test for
convergence, and resume program execution at a location
following the erroneous statements. If the convergence
criterion is satisfied, the PAUSE command will suspend
execution of the sequence. The breakpoint, set at line 410,
will be encountered on each pass through the loop. Note
that although line 410 is illegal because of the unresolved
function reference, program execution will be suspended
before the statement is executed. The subsequent GO
command will resume execution at line 420, bypassing the
illegal statement.

After the breakpoint is defined, program execution is
initiated with the GO command. The commands in the
breakpoint body are executed automatically, as indicated
by the PRINT command output, until the convergence
criterion is satisfied. In response to the first occurrence of
the PAUSE command, GO is entered to resume program
execution. In response to the next occurrence of PAUSE,
the command EXECUTE,P.MAIN_L.140 is entered to
transfer control to line 140 of the main program, allowing
the program to print the final results and to terminate.

SET,BREAKPOINT,L.15 [
PAUSE, 'INPUT?'

Set breakpoint with body at line 15; when PAUSE
is executed, user can issue command to read

PRINT#*,°X="',X,' y=' ,y (==
60,L.22 ‘
1

SET,BREAKPOINT,L.35 [
SUMXY=X(1)*Y (1)+X (2)*Y (2)
SUMXY=SUMXY+X (3)*Y (3)+X (4)*Y (4)
SUMXY=SUMXY+X (5)*Y (5)

IF(DENOM.EQ.0.0)PAUSE,'DENOM IS O° ’
RSQ=SUMX/DENOM
]

SUMX=(N*SUMXY-SUMX*SUMY)* (NXSUMXY-SUMX*SUMY)

command file.

Set breakpoint with body at line 35; commands are
included to calculate correct values for SYMXY and
RSQ and to test DEMON for zero value.

Figure 4-17. List of File BPFILE

60484100 A

4-21

Debug Session for First Test Case:

CYBER INTERACTIVE DEBUG

?read,bpfile -

?list,breakpoint

*B #1 = L.15 , *B #2 =
?list,breakpoint, #1,#2

L.35

*B #1 = L.15
SET,BREAKPOINT,L.15 [
PAUSE, 'INPUT?'

—

. List breakpoint locations.

PRINT*,*X=',X,"' Y="
60,L.22

]

*B #2 = L.35
SET,BREAKPOINT,L.35 [
SUMXY=X (1) %Y (1)+X (2)*xY(2)

SUMXY=SUMXY+X (3)*xY (3)+X (4)*xY (4)
SUMXY=SUMXY+X (5) %Y (5)
SUMX=(N*SUMXY=SUMX*SUMY) * (N*SUMXY-SUMX*SUMY)
IF(DENOM.EQ.0.0)

PAUSE,"DENOM IS O'

RSQ=SUMX/DENOM

]

Y

?go

*B #1, AT L.15

>

INPUT 27—

?read,test] =

790 -x

X=1. 10. 7.6 2.9 5.1

*T #17, END IN L.39
?

Y=1. 10. 7.6 2.9 5.1

END CORR
22500 MAXIMUM EXECUTION FL.
1.598 CP SECONDS EXECUTION TIME.

quit
DEBUG TERMINATED

Debug Session for Second Test Case:

CYBER INTERACTIVE DEBUG

?read,bpfile -
?go
*B #1, AT L.15

INPUT?
72read,test2 -=-=

?2go

X=3. 3. 3. 3. 3. ¥=1. 5.1 7.6 10. 15.
*B #2, AT L.35
DENOM IS O

2quit

DEBUG TERMINATED

Establish breakpoint definitions stored in BPFILE.

List breakpoint bodies.

Breakpoint #1.

Breakpoint #2.

Breakpoint detected at line 15; sequence execution initiated.
PAUSE command suspends sequence execution.
Initiate execution of commands in TEST1.

Resume sequence execution.

Establish breakpoint definitions stored in BPFILE.

Initiate execution of commands in TEST2.

Figure 4-18. Debug Session Using Command Sequence for Debugging Program CORR (Sheet 1 of 2)

4-22

60484100 A

Debug Session for Third Test Case:

CYBER INTERACTIVE DEBUG
?read,bpfile = Establish breakpoint definitions stored in BPFILE.

?7go

*B #1, AT L.15
INPUT?

?read,test3 = Initiate execution of commands in TEST3.

?go

Xx=0. 0. 0. 0. .1 v=0. 100. 0. 500. 10.
*T #17, END IN L.39
2

END CORR

22500 MAXIMUM EXECUTION FL.

1.689 CP SECONDS EXECUTION TIME.
quit

DEBUG TERMINATED

Figure 4-18. Debug Session Using Command Sequence for Debugging Program CORR (Sheet 2 of 2)

CYBER INTERACTIVE DEBUG
? set,breakpoint,p .newt_L.410 [

IN COLLECT MODE Set breakpoint with body at line 410.
? fx=3.0%x~(x+1.0)/(x-1.0) Include commands to calculate FX,
? printx,'iteration ',its,' fx= ',fx \ —=— test for convergence, test number of
? if(fx.le..0001)pause,'sequence suspended,check fx' iterations, and resume execution at
? if(its.ge.100)pause,'max iterations exceeded" fine 420.
? go,Ll.420 '
?2 3]
END COLLECT
? g0 - Initiate execution.
ITERATION O FX= 1. \
ITERATION 1 FX= 6.6666666666666E-02
ITERATION 2 FX= 1.9032332033941€~02
ITERATION 3 FX= 5.6719259568219€-03 The breakpoint body is executed on each
ITERATION 4 FX= 1.7103829132736E-03 \ pass through the loop, until the IF test
ITERATION 5 FX= 5.1756717224194E-04 is satisfied and the PAUSE command
ITERATION 6 FX= 1.5678125763685E-04 suspends execution of the sequence.
ITERATION 7 FX= 4.7507133633218E-05
*B #1, AT P.NEHT_L.41D /
SEQUENCE SUSPENDED,CHECK FX
? go

ITERATION 8 FX= 1.4396770417591E-05
*B #1, AT P.NEWT_L.410
SEQUENCE SUSPENDED,CHECK FX

? execute,p.main_L.140 == Resume execution of main program.
CONVERGENCE 1IN 8 ITERATIONS. X= -.2152E+00 In this case, EXECUTE must be
*T #17, END IN P.MAIN_L.200 used. A GO command entered

? quit here would resume execution of

the suspended sequence.
SRU 28.370 UNTS.

RUN COMPLETE.

Figure 4-19. Debug Session Using Command Sequence for Debugging Subroutine NEWT

60484100 A 4-23

DEBUGGING IN AN OVERLAY ENVIRONMENT S

Programs containing overlays can be executed under
CYBER Interactive Debug (CID) control using all the
features presented in the preceding sections. In addition,
CID provides the following features to facilitate debugging
of overlays:

o Qualification notation which allows you to reference
locations in different overlays.

® An OVERLAY trap that suspends program execution
when an overlay is loaded.

® Special command forms that limit the command scope
to specific overlays.

An important fact to remember when debugging programs
containing overlays is that while all CID commands are
valid for overlays in memory, only certain commands can
reference locations in overlays that are not loaded.

SUMMARY OF OVERLAY PROCESSING

Overlaying allows you to divide a program into sections,
called overlays, to reduce the amount of memory required
for execution. Different overlays can occupy the same
storage locations at different times. Thus, when an
overlay residing in memory is not currently required by the
program, it can be replaced by another overlay.

There are three levels of overlays: a zero level, a primary
level, and a secondary level. The zero level, sometimes
referred to as the main overlay, is resident in memory
throughout program execution. The primary level is called
from the zero level and is loaded immediately above the
zero level. The secondary level is called from its
associated primary level or from the zero level and is
loaded immediately above the primary level. ’

A primary level overlay can have up to 63 secondary level
overlays associated with it. When a primary overlay is
called from the zero level overlay, it replaces the primary
overlay currently residing in memory. When a secondary
level overlay is called from a zero level or primary level, it
replaces the secondary overlay currently residing in
memory. Thus, only the zero level, one primary level, and
one secondary level can reside in memory concurrently.

Overlays are identified by a pair of integers, as follows:

(0,0) Zero or main overlay
(i,0) Primary overlay
()] Secondary overlay

where i is the primary level number and j is the secondary
level number. For example, (1,0) and (2,0) are primary
overlays; (2,1), (2,2), and (2,3) are secondary overlays
associated with primary overlay (2,0).

60484100 A

A group of program units to be loaded into an overlay must
be preceded by an OVERLAY directive of the form:

OVERLAY(fn,i,j)

where Ifn is the name of the file on which the overlay is to
be written, and i and j are level numbers. The OVERLAY
directive must begin in column 7.

Overlays are called from within a FORTRAN program by
the statement:

CALL OVERLAY(Ifn,i,j)

where Ifn is the name of the file in character string format
on which the overlay is written, and i and j are level
numbers.

An example of a program containing overlays is illustrated
in figure 5-1. This program contains a main overlay (0,0),
two primary level overlays (1,0) and (2,0), and a secondary
overlay (1,1) associated with overlay (1,0). The overlays
are stored on a file named OVLF, as established by the
OVERLAY directives. Each overlay contains a program
unit that performs a simple computation. The variables X,
Y, and Z are declared in common and are therefore global
to the program. The 'variable RESULT is referenced in
three program units and is local to each. The program
units in both primary overlays have the same name.

00100 OVERLAY (OVLF,0,0)

00110 PROGRAM SETXYZ

00120 COMMON /ACOM/X,Y,Z

00130 X = 1.0

00140 Y = 2.0

00150 z = 3.0

00160 CALL OVERLAY('OVLF',1,0)
00170 CALL OVERLAYC'OVLF',2,0)
00180 END

00190¢

00200 OVERLAY(OVLF,1,0)

00210 PROGRAM COMP

00220 COMMON /ACOM/X,Y,Z

00230 RESULT = -3.0%X - 2.0%Y + 2.0%Z
00240 CALL OVERLAYC'OVLF',1,1)
00250 RETURN

00260 END

00270¢

00280 OVERLAY(OVLF,1,1)

00290 PROGRAM COMP2

00300 COMMON /ACOM/ R,S,T
00310 RESULT = 5.0%R - 6.0%S + 4.0%T
00320 RETURN

00330 END

00340C

00350 OVERLAY (OVLF,2,0)

00355 PROGRAM COMP

00360 COMMON /ACOM/A,B,C
00370 RESULT = 4.0%A + 2.0%B - C
00380 RETURN

00390 END

Figure 5-1. Sample Overlay Program

5-1

The program calculates a value for the variable RESULT in
each overlay. Each calculation is local to the overlay in
which it resides. The (0,0) overlay is loaded first and
remains in memory throughout execution. This overlay
sets values for X, Y, and Z and then calls the (1,0) overlay.
The (1,0) overlay calculates RESULT, then calls the (1,1)
overlay which calculates its local RESULT. At this point,
the three overlay levels reside in memory concurrently.
When execution of the (1,1) overlay has completed, control
returns to the main overlay which then calls the second
primary overlay (2,0). Overlay (2,0) replaces overlays (1,0)
and (1,1) in memory.

Refer to the CYBER Loader reference manual or to the
FORTRAN reference manual for more information on
overlays.

QUALIFICATION

The notation forms presented in section 3 (table 3-1) are
valid for programs containing overlays. However, when
referencing a location in a program unit having the same
name as a program unit in a different overlay, you must
indicate the overlay containing the desired program unit.
This is accomplished by prefixing the location specification
with an overlay qualifier of the form:

{i,))
where i and j are the overlay level numbers.
Examples:

SET,TRAP,LINE,(2,0)P.MTADD

Sets a LINE trap in program unit MTADD residing
in overlay (2,0).

SET,BREAKPOINT,(2,1)P.MTADD_L.5

Sets a breakpoint at line5 of program unit
MTADD residing in overlay (2,1).

DISPLAY,(0,0)P.SUB1_X

Displays the contents of X in program unit SUB1
residing in the zero level overlay.

The following restrictions apply to the use of overlay
qualification notation:

e It is necessary to use overlay qualification only when
duplicate program unit names exist.

e Overlay qualification cannot be used with the PRINT,
IF, and assignment commands.

e If the overlay qualifier is omitted from a location
specification and duplicate program unit names exist,
the name of the program unit currently in memory is
selected. If the named program unit is not in memory,
the program unit residing in the overlay having the
lowest primary level number is selected.

Overlay qualification notation is also used in CID output
messages to denote a particular overlay, as in the trap
message:

*T #17, END IN (0,0)P.SETXY_L.9

An END trap has occurred at line 9 of program SETXY in
overlay (0,0).

5-2

REFERENCING LOCATIONS IN
UNLOADED OVERLAYS

The following restrictions apply to overlays that have not
been loaded into memory:

e You can set traps and breakpoints in any overlay, even
if it is not in memory. These traps and breakpoints
will be recognized when the containing overlay is
loaded and its programs are executed.

e You cannot resume execution in an unloaded overlay.

e You cannot display the contents of locations within
overlays that are not in memory. The LIST,VALUES
command lists only those variables defined in loaded
overlays. LIST,VALUES displays variables in
alphabetical order, grouped according to the program
unit in which they are defined. Each program unit
name is prefixed by an overlay qualifier of the
form (i,)).

® You cannot alter the contents of variables within
overlays that are not in memory.

The following commands can reference locations in
unloaded overlays:

e SET,TRAP

e SET,BREAKPOINT

e SET,HOME

e LIST,TRAP

e LIST,BREAKPOINT

e LIST,MAP

e CLEAR,TRAP

o CLEAR,BREAKPOINT
e SAVE,TRAP

e SAVE,BREAKPOINT

If you illegally reference a location in an unloaded overlay,
CID issues the error message:

*ERROR - ADDRESS IN UNLOADED OVERLAY

OVERLAY TRAP

The OVERLAY trap suspends program execution and gives
control to CID whenever specified overlays are loaded into
memory. This allows you to examine and alter the status
of a program as it exists at the time the overlay is loaded.
The trap occurs after the overlay is loaded but before
control transfers to the loaded overlay. The forms of the
command to set an overlay trap are:

SET,TRAP,OVERLAY,*
CID gets control when any overlay is loaded.
SET,TRAP,OVERLAY (i,j)

CID gets control when overlay (i,j) is loaded.

60484100 A

When an overlay trap occurs, CID issues the message:
T #n, OVERLAY (i,j) IN (i,j)P.name_L..0

n Trap number assigned by CID.

overlay to be executed first.

COMMAND FORMS FOR
OVERLAY DEBUGGING

Level numbers of the current overlay.

Name of the program unit in the current

The following CID commands are issued during this session:

LIST ,MAP

Lists the level numbers of all overlays in the

program. Overlays currently
indicated by an asterisk.

in memory

LIST,MAP,(2,0)

are

Lists program modules contained in the (2,0)

overlay.

SET,TRAP,OVERLAY,*

Sets an overlay trap that suspends execution when

any overlay is loaded.

The commands to LIST, CLEAR, and SAVE traps and

breakpoints, and the LIST,MAP command have special

forms intended for use with overlay programs.

forms, listed in table 5-1, allow you to specify an overlay

or list of overlays for the scope parameter.

The LIST,MAP command is especially useful when used

TRACEBACK
These '

home program.

DISPLAY,#HOME

with overlay programs. A special form of this command

lists all program modules and groups them according to
Overlays are identified by an (i,j) designation.

overlay.

overlay in which it resides.

Overlays currently in memory are indicated by an asterisk.

OVERLAY EXAMPLE

A debug session for the program in figure 5-1 is illustrated
The purpose of this session is to suspend

in figure 5-2.

SET,HOME (1,0)P.COMP

Displays a program traceback list starting at the

Displays the name of the home program and the

Designates COMP in overlay (1,0) as the home
program. Note that the (1,0) overlay is not in

memory when this command is issued.
declared
illustrated by the next command.

program execution after each overlay is loaded and to issue

various commands to examine the status of the program.

PRINT*,RESULT

Control statements are included to activate debug mode

and compile, load, and execute the program. Debug mode
must be on at compile time and at the time the load

sequence is issued.

TABLE 5-1.

Attempts to print the value of RESULT.

current home program is not in memory.

COMMAND FORMS FOR OVERLAY PROGRAMS

Variables
in COMP cannot be referenced,

as

The

attempt fails because the overlay containing the

Command

Description

LIST,TRAP, type,(i,3),(i,3)s...

LIST,MAP,(1,3),(1,3),...
LIST,BREAKPOINT,(1,3),(1,3),..-

CLEAR,TRAP, type, (1,3),(153)s---

CLEAR ,BREAKPOINT, (1,3),(is3)se.-
SAVE,BREAKPOINT, 1N, (i53)s (i53) 5.«
SAVE,TRAP, 1fn, type, (1,3),(is3)s...

-Lists addresses of traps in the specified overlays; * can

be substituted for type, in which case all types are listed.
Lists program modules contained in the specified overlays.

Lists locations of all breakpoints in the specified
overlays.

Clears all traps of the specified type in the specified
overlays.

Clears all breakpoints in the specified overlays.
Copies the breakpoints in the specified overlays to 1fn.
Copies the traps of the specified type in the specified

overlays to 1fn; * can be substituted for type, in which
case all types are copied.

60484100 A

5-3

debug

$DEBUG.

/ftn5(i=ovprog,1=1istf,seq)
0.303 CP SECONDS COMPI

/enter load(1go) 190

LATION TIME.

CYBERINTERACTIVE DEBUG
? list,map
(0,0) *, (1,0), (1,1)

Load sequence.

, (2,0) ~«————— Overlay (0,0) is in memory.

? set,trap,overlay,* -
?

? go
*T #1, OVERLAY (1,0) IN (1

? list,map

(0,0) *, (1,00 *, (1
? go

*T #1, OVERLAY (1,1) IN (1
? list,map

(090) * s (1’0) * ’ (1
? display,#home

Set OVERLAY trap.

50)P.COMP_L .0 ~«————— OVERLAY trap occurs when overlay (1,0} is loaded.
,1), (2,0) ~«————— Overlays (0,0) and (1,0) are in memory.
,1)P.CMP2_L.0 ~=——— OVERLAY trap occurs when overlay (1,1) is loaded.

,1) * | (2,0) =«——— Overlays (0,0), (1,0), and (1,1) are in memory.

#HOME = (1,1)P.COMP2 —=
? list,values —=—

Program COMP2 in overlay (1,1) is current home program.

(0,0)P.SETXYZ

X=1.0, Y=2.0, Z-=
(1,0)P.COMP

RESULT = -1.0, X = 1.0,
(1,1)P.coMP2

R =1.0, RESUT = -I,

List all variables and values currently in memory.
3.0

Y=2.0, Z-=3.0
$=2.0, T-=3.0

? traceback =

P.COMP2 CALLED FROM P.COMP L.240
P.COMP CALLED FROM P.SETXYZ L.160

? go

*T #1, OVERLAY (2,0) IN (2
? list,map

(0,0) *, (1,0), (1,1)
?

? list,map
(0,0) * , (1,0), (1,1)

0
*% #17, END IN (0,0)P.SETXYZ L.180 ~«——————— Program terminates at line 180 of program SETXYZ in overlay (0,0).

Initiate traceback from home program.

,0)P.COMP_L.0<——-—— OVERLAY trap occurs when overlay (2,0) is loaded.
(2,0) *~a———— Overlays (0,0) and (2,0) in memory.

, (2,0) *
List all variables and values currently in memory.

? list,values —=
(0,0)P.SETXYZ

X=10, Y=2.0, Z-=
(2,0)P.coMP

A=1.0, B=2.0, C-=
? print*,result

*ERROR - NO PROGRAM VARIAB

3.0
3.0, RESULT = 5.0

LE RESULT ~-&———————— Variable RESULT is not defined in home program.
Make program COMP in overlay (1,0) the home program.

? set,home,(1,0)p.comp —=

? priht*,resu]t

*ERROR - ADDRESS IN UNLOADED OVERLAY-=————— Home program is not in memory.

? set,home,(2,0)p.comp—=
? print*,result
5.
? quit
DEBUG TERMINATED

Make program COMP in overlay (2,0) the home program.

Figure 5-2. Debug Session for Overlay Program

60484100 A

STANDARD CHARACTER SETS A

Control Data operating systems offer the following
variations of a basic character set:

® CDC é4-character set
® CDC é63-character set
® ASCII 64-character set
® ASCII 63-character set

The set in use at a particular installation is specified when
the operating system is installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use). Under
NOS/BE, the alternate mode can be specified by a 26

60484100 A

or 29 punched in columns 79 and 80 of the job statement
or any 7/8/9 card. The specified mode remains in effect
throughout the job unless it is reset by specification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26
or 29 punched in columns 79 and 80 of any 6/7/9 card, as
described above for a 7/8/9 card. In addition, 026 mode
can be specified by a card with 5/7/9 multipunched in
column 1; 029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of table A-1 are applicable to BCD terminals;
ASCII graphic characters are applicable to ASCII-CRT and
ASCII-TTY terminals.

TABLE A-1. FORTRAN AND STANDARD CHARACTER SETS

cDcC ASCII
Display Hollerith External .
FORTRAN Code Graphic Punch BCD e Puben Code
{octal) (026) Code ! (029) (octal)
: (colon) oot : (colon)” 8-2 00 : (colon) Tt 8-2 072
A 01 A 1241 61 A 1241 101
B 02 B 12-2 62 B 12-2 102
C 03 c 12-3 63 Cc 12-3 103
D 04 D 12-4 64 D 124 104
E 05 E 1256 65 E 125 105
F ' 06 F 126 66 F 126 106
G 07 G 12-7 67 G 12-7 107
H 10 H 128 70 H 128 110
| 11 | 129 7 | 129 111
J 12 J 111 41 J 111 112
K 13 K 11-2 42 K 112 113
L 14 L 11-3 43 L 11-3 114
M 15 M 114 44 M 14 115
N 16 N 11-6 45 N 115 116
(o] 17 [0} 11-6 46 (0] 11-6 117
P 20 P 11-7 47 P 117 120
Q 21 Q 118 50 Q 118 121
R 22 R 119 51 R 119 122
S 23 S 0-2 22 S 02 123
T 24 T 0-3 23 T 0-3 124
U 25 u 04 24 U 04 125
Y 26 v 05 25 v 05 126
w 27 w 0-6 26 w 0-6 127
X 30 X 0-7 27 X 07 130
Y 31 Y 08 30 Y 08 131
z 32 Z 09 31 Z 09 132
0 33 0 0 12 0 0 060
1 34 1 1 01 1 1 061
2 35 2 2 02 2 2 062
3 36 3 3 03 3 3 063
4 37 4 4 04 4 4 064
5 40 5 5 05 5 5 065
6 41 6 6 06 6 6 066
7 42 7 7 07 7 7 067
8 43 8 8 10 8 8 Q70
9 44 9 9 1 9 9 071
+ (plus) 45 + 12 60 + 12-8-6 053 .
- (minus) 46 - 11 40 - 1 055
* (asterisk) 47 * 11-84 54 * 1184 052
/ (slash) 50 / 0-1 21 / 01 057
({left paren) 51 (084 34 (12856 050
) (right paren) 52) 12-8-4 74) 1185 051
$ (currency) 53 $ 1183 53 $ 1183 044
= (equals) 54 = 8-3 13 = 86 075
blank 55 blank no punch 20 blank no punch 040
, (comma) 56 , (comma) 0-8-3 33 , (comma) 0-8-3 054
. {decimal point) 57 . (period) 128-3 73 . (period) 12-8-3 056
60 = 086 36 # 83 043
61 [87 17 [12822 133
62] 0-8-2 32] 118-2 135
63 o 1t 86 16 9% Tt 084 045
" (quote) 64 = 84 14 " (quote) 87 042
65 re 0-8-5 35 __ (underline) 085 137
66 v 110 or 1182111 52 ! 1287 or 11:0' 1T 041
67 A 08-7 37 & 12 046
' (apostrophe) 70 t 1185 55 ! {apostrophe) 85 047
71 } 11-8-6 56 ? 0-8-7 077
72 < 12:0 or 1282111 72 < 1284 or 120" 11 074
73 > 11-8-7 57 > 0-8-6 076
74 < 85 15 @ 84 100
75 > 1285 75 N\ 082 134
76 = 12-8-6 76 —~ {circumflex) 1187 136
77 ; {semicolon) 1287 77 ; (semicolon) 1186 073
1‘l'welve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than two colons.
t1In installations using a 63-graphic set, display code 008 has no associated graphic or card code; display code 638 is the colon
(8-2 punch). The % graphic and related card codes do not exist and translations yield a blank (55g).
1The alternate Hollerith (026) and ASCII (029) punches are accepted for input only (NOS/BE only).

A-2

60484100 A

GLOSSARY B

“

Abort -
To terminate a program or job when an error condition
(hardware or software) exists from which the program
or computer cannot recover.

Auxiliary File -
An optional file, established by the SET,AUXILIARY
command, to which CYBER Interactive Debug (CID)
output is written. The output types written to this file
are specified by special output codes.

Batch Mode -
A mode of CID execution which allows programs
intended for batch execution to be executed under CID
control.

Breakpoint -
A designated location in a program where execution is
to be suspended.

Collect Mode -
A mode of CID execution in which commands entered
by the user are not executed, but are included in a
group, trap, or breakpoint body. Collect mode is
initiated by a left bracket ([) at the end of a
SET,TRAP; SET,GROUP; or SET,BREAKPOINT
command, and are terminated by a right bracket (]).

Common Block -
A module intended solely for storing data. A block of
data can be declared in common to both the calling
routine and the called routine as an alternative to
passing data to routines via parameter values.

Debug Mode -
A mode of execution in which special CID tables are
generated during compilation and in which user
programs are executed under CID control; initiated by
a DEBUG(ON) control statement, and terminated by a
DEBUG(OFF) contro!l statement.

Debug Session -
A sequence of interactions between the user and CID,
beginning when execution of the user program is
initiated in debug mode, and ending when a QUIT
command is issued.

Entry Point -
A special location within a program module. In
FORTRAN programs, this location is named in an
ENTRY statement, FUNCTION statement, or
SUBROUTINE statement. An entry point is, by
convention, the target of the RJ (Return Jump)
instruction that transfers control to the module. The
RJ instruction stores the return address at the entry
point location and starts execution at the next
location.

Extended Memory -
An additional memory available as an option on
CYBER computer systems. This memory can only be
used for program and data storage, not for program
execution. Special hardware instructions exist for
transferring data between central memory and
extended memory.

60484100 A

Group -
A sequence of CID commands established and assigned
a name by a SET,GROUP command and executed when
a READ command is issued.

Home Program -

Program unit in which variables, line numbers, and
statement labels referenced by the user in CID
commands are assumed to be located unless
appropriate qualifiers appear. By default, the home
program is the program unit being executed at the
time CID gains control. The user can change the
default with the SET,HOME command.

Interactive -
Capable of a two-way back and forth exchange of
information.

Interactive Mode -
The normal mode of CID execution. The user enters
commands directly from the terminal and CID
immediately executes the commands. CID can also
execute in batch mode.

Interpret Mode -

A mode of execution in which a special routine, called
an interpreter, examines each machine instruction to
be executed in the user program, and simulates its
execution by the execution of several of its own
instructions. Execution in interpret mode
consequently takes 20 to 50 times as long as direct
execution. Certain CID features require interpret
mode execution.

Interrupt (verb) -
To stop a running program in such a way that it can be
resumed at a later time.

Interrupt (noun) -
A special control signal which, when issued, causes
action as described for INTERRUPT (verb).

Module -
A named section of coding output by a compiler or
assembler, or a block of data (common block). Prior
to loading, modules are called object modules; after
loading they are called load modules. In FORTRAN, a
module is a main program, subroutine, function
subprogram, or common block.

Optimizing Mode -
One of the compilation modes of the FORTRAN
compiler, indicated by the control statement options
OPT=0, 1, 2, or 3. OPT=0 compilation is required for
full use of the features described in this manual.

Overlay -

A portion of a program, consisting of one or more
modules, which can share an allocated area of memory
with other portions of the program. When access to a
particular module is required, the overlay containing
that module is loaded, thus overlaying the previous
contents of the memory area allocated for that
overlay. Such a scheme allows large programs to
execute in a limited amount of memory.

Program -
The completely loaded set of one or more object
modules. A program that has been loaded in debug
mode can be executed under CID control.

Program Module -
A module intended for execution. A program module
always has an entry point, a named location in the
module to be used in calling the module.

Program Unit -
A FORTRAN main program, function subprogram,
subroutine, or block data subprogram.

Terminal Session -
The sequence of interactions between the user and a

terminal which begins when the user logs in, and
terminates when the user logs out. Contrast with
Debug Session.

Trap (verb) -
To suspend program execution and transfer control to

CID upon the detection of a specified condition.

Trap (noun) -
A mechanism that detects the occurrence of a

specified condition, suspends execution of the user
program at that point, and transfers control to CID.

60484100 A

ARITHMETIC ERRORS C

The following paragraphs discuss some of the errors that
can cause a FORTRAN program to terminate prematurely.
To use CID effectively, you should be able to recognize
situations that can cause these errors. A knowledge of the
internal representation of numbers can be helpful in
understanding why arithmetic errors occur.

FLOATING-POINT REPRESENTATION

The internal floating-point format is shown in figure C-1.
Bits 0 through 47 contain the coefficient of the number,
equivalent to about 14 decimal digits. The binary point is
assumed to be at the right of bit 0. The sign of the
coefficient is represented by bit 59, 0 for a positive value
and 1 for a negative value. The exponent is contained in
bits 48 through 58 and is biased by 2000 octal, that is, 2000
octal is added to the exponent. Some examples of internal
floating-point representation, including the largest and
smallest permissible values, are illustrated in table C-1.
Operands exceeding the maximum or minimum values
cause execution errors.

ARITHMETIC MODE ERRORS

Arithmetic mode errors occur when the central processor
encounters an instruction that cannot be executed. Such
an instruction generally involves an operand that contains
invalid data or an address beyond the user's field length.
The arithmetic mode errors and possible causes are listed
in table C-2.

OVERFLOW, UNDERFLOW, DIVISION
BY ZERO

Floating-point overflow occurs when a value is generated
which exceeds the allowable exponent range. This
situation can occur when performing calculations with
numbers of extremely large magnitude or when a nonzero
number is divided by zero.

When overflow occurs, the exponent is set to 3777g (the
largest possible exponent) and the characteristic is set to
zero. Such an operand is called an infinite operand. The
executing program aborts when the infinite operand is used
in a subsequent computation, not when it is generated. A
debug session for a program that generates an infinite
operand is illustrated in figure C-2. A division by zero
generates the infinite operand. Program execution
terminates when the infinite operand is referenced in the
statement D=C+1.0. The LIST,VALUES command shows
the program variables as they existed at the time of
termination. The value of the variable C, the infinite
operand, is represented by the letter R.

Floating-point underflow occurs when a value is generated
which would have an exponent less than -293. The
resulting operand is set to all zeros.

The allowable range for floating-point numbers is shown in
table C-3.

TABLE C-1. EXAMPLES OF FLOATING-POINT NUMBERS

When a mode error occurs, the executing program is
‘aborted and a message of the following format is issued: Number Internal Representation
time ERROR MODE=n ADDRESS=xxxxxx +1. 1720 4000 0000 0000 0000
where n is the mode number and xxxxxx is the relative +100. 1726 6200 0000 0000 0000
octal address where the error occurred.
-100. 6051 1577 7777 7777 17777
When a mode error occurs while executing in debug mode,
control passes to CID. This is because of the ABORT trap 1.t64 2245 6047 4037 2237 7733
explained in section 3. Upon receiving control, CID issues
the following message and prompt: -1.E64 6404 2570 0025 6605 5317
*T#18 ABORT CPU ERROR EXIT n IN L.m 0. 0000 0000 0000 0000 0000
?
where n is the mode number and m is the source line
number where the error occurred. You can then enter CID
commands to examine the status of the program as it
existed at the time of termination.
59 48 0
1 11 bits 48 bits
Sign Biased Integer Coefficient | Assumed Binary Point
Exponent

Figure C-1. Internal Floating-Point Format

60484100 A

TABLE C-2. MODE ERRORS
ﬁ:;g;r Dayfile Message (NOS) Explanation Possible Causes

0 ILLEGAL INSTRUCTION A branch to location zero Machine instructions destroyed by array
has occurred or an illegal overflow; mismatch between number of argu-
instruction has been ments in CALL and SUBROUTINE statement.
executed.

1 CM OUT OF RANGE Program has referenced a a. Program attempted to fetch or store
location outside the user's data outside program field length;
field length. probably caused by incorrect

subscript.

b. Program attempted to jump to an address
outside program field length; probably
caused by missing function or sub-
routine or misspelled function or
subroutine name.

c. Program executed a word that did not
contain an instruction; probably caused
by array overflow.

2 ARITHMETIC OVERFLOW Infinite value used as Nonzero number divided by zero; very large
operand. number divided by very small number; very

large number multiplied by verg large

number; numbers very near 10322 ip

absolute value added or subtracted; large

number raised to a large power; at some

installations, undefined value used in a

calculation.

4 ARITHMETIC INDEFINITE Indefinite value used as Zero divided by zero; zero multiplied by an
operand. infinite value; infinite value divided by

an infinite value; infinite values added or

subtracted; at some installations, unde-
fined value used in a calcuiation.

3 Combination of 1 and 2. See above.

5 Combination of 1 and 4. See above.

6 Combination of 2 and 4. See above.

7 Combination of 1, 2, and 4. See above.

INDEFINITE OPERANDS

Indefinite operands are generated when the central
processor encounters an instruction that cannot be
resolved, such as a division where both the dividend and the
divisor have a value of zero. Indefinite operands can also
be generated when a variable has not been initialized (the
value assigned to uninitialized areas of memory is an
installation parameter). As with infinite operands,
indefinites cause abnormal termination of execution when
they are referenced.

An indefinite operand is represented by the character I
when displayed. The internal representation of an
indefinite operand is shown in table C-3.

ERRORS INVOLVING INTEGERS

The maximum permissible absolute value of an integer
depends on the context in which it is used. When an integer
exceeds the limits of the central processor, it is assigned a
value of zero. The allowable range for integers is shown in
table C-4.

60484100 A

CYBER
?go

PROGRAM ERR

VIS WN =

INTERACTIVE DEBUG

74/74

PROGRAM ERR
A=1.0

B=1.0
C=(A+B)/ (A-B)
D=C+1.0

END

OPT=0

*T #18, ABORT CPU ERROR EXIT 02 IN L.5 -e— Error exit occurs in line 5.

?2list,

w >» U

-ERR
= 1.

values

o, B

1.0, c

=R’

Figure C-2. Program and Debug Session Illustrating Mode Error

TABLE C-3. FLOATING-POINT REPRESENTATIONS
Positive Operand Negative Operand
Value Floating-Point Representation Octal Floating Octal
Largest Value 1.265014083171E+322 37767...7g -1.265014083171E+322 40010...0g
Smallest Value 3.131513062514E~-293 000140...0g | -3.131513062514E-294 777637...7g
Zero (underflow 0.0 0...0g -0.0 7...78
yields zero operand)
Overflow (infinite R 37770...0g -R 4000. . .0g
operand)
Indefinite I 17770...0g -1 60007...7g
TABLE C-4. INTEGER REPRESENTATIONS
Positive Operand Negative Operand
Value Integer Octal Integer Octal
Maximum value for 248.1 37767...7g -(248.1) 40010...0g
arithmetic operations (5761 7927 7326 7128 31)
Maximum value for sub- 217 0...037777g Negative operand
scripts and DO Toop index (131071) not permitted
Zero 0 0...0 -0 7...7g
Infinite Operand Set to zero
Indefinite Operand Set to zero

60484100 A

BATCH MODE DEBUGGING D

CYBER Interactive Debug (CID) is primarily intended to be
used interactively, but can be used in batch mode. Possible
reasons for using batch mode include the possibility of a
large volume of output, or lack of access to a terminal. In
batch mode, however, you must plan the entire session in
advance. This requires care and a knowledge of what
errors are likely to occur.

To conduct a debug session in batch mode, commands must
exist on a file of card images called DBUGIN from which
CID reads all input. You can create this file by using the
system text editor, or you can punch the commands on
cards, include them as part of the job deck, and copy file
INPUT to DBUGIN. Commands are punched or written in
the same format as in interactive mode; a card can contain
a single command or multiple commands separated by
semicolons.

As in interactive execution, debug mode is established by
the DEBUG control statement. The debug session is
initiated by a statement to load and execute the program.
Control transfers immediately to CID, which begins
executing the commands in DBUGIN. When CID encounters
a GO or EXECUTE in the command stream, control
transfers to the user program. The user program executes
until a trap or breakpoint is encountered. In this manner,
control transfers between the program and CID with no
user intervention.

A QUIT command is normally the last command of the
sequence. However, this command can be omitted and CID
will terminate after the last command has been executed.

Following are some restrictions that apply to batch mode
debugging:

e Invalid commands are disregarded; when CID
encounters such a command, processing continues with
the next command.

e Commands that would generate a warning message in
interactive mode are executed in batch mode.

e All commands are executed except when execution is

impossible; you cannot establish veto mode in a batch
session.

60484100 A

In batch mode, all output from CID is written to a file
named DBUGOUT. This is a local file and it is the user's
responsibility to print the file or make it permanent. You
can control the types of output sent to DBUGOUT with the
SET,OUTPUT command. Output can also be sent to a
separate file with the SET,AUXILIARY command.

Batch output from a debug session does not normally show
the user-specified CID commands as they are executed.
CID reads the commands from DBUGIN but does not echo
them to DBUGOUT unless the T option is specified on the
SET,OUTPUT command. Use of this option usually
improves the readability of a batch debug session.

With the exception of the SET,VETO command, all CID
commands are valid in batch mode. You can set traps and
breakpoints, define command sequences, display and alter
the values of program variables, and resume program
execution. The commands in DBUGIN should be specified
in the same order as in interactive mode. CID accesses
DBUGIN for all input that would normally be input from
the terminal.

A suggested technique for batch mode debugging is to use
only traps and breakpoints with bodies. This way, the
commands to be executed on suspension of execution
appear in the input stream immediately after the
SET,TRAP or SET,BREAKPOINT command that caused
suspension. In addition, only one GO command is required.

An example of a program to be debugged in batch mode
(under NOS) is illustrated in figure D-1. (To execute this
program under NOS/BE, replace the job user, and change
statements with a job statement containing the appropriate
accounting information.) Breakpoints with bodies are set
initially at lines 2 and 5, and program execution is
initiated. When the first breakpoint is encountered, CID
receives control, executes commands in the body, and
returns control to the program. The command GO,L.4
skips the FORTRAN statements that open and read an
input file. When the breakpoint at line 5 is encountered,
CID executes the LIST,VALUES and QUIT commands. The
contents of the output file DBUGOUT are shown in
figure D-2.

J£B Statement
LSEk Statement .
CHARGE Statement
CCPYBROUINPUTSSRPL(TN)
REwWINUCCBUGIN)
DEBUG(ON)
FINE.
LGG,
FEWIND(DLEUCGDUT)
COPYSEF(LBUGTUT»CLTIFLT)
7/8¢% in column 1
SETsBRKEAKPUINTS L2
X1=(CaC3Y1=Ca¢
X?‘Z.C;Y?=C.C
X3=14L;3Y32-1,0
GCyl o3
]
SETsbrEAKPCINT L o6 |
LISToVALUFRSsP RE
QUIT
]
G0
748719 in column 1
PROGRAY RE
1C KEAC(¥ ot 9 END=200ERR=2C) X1oY19X25Y25135Y3
CAlL ARYA(XLI,Y19X25Y25sXx35Y23,4)
GG TC 1C
STCP
END
SUBKUULTINE AREALXLIsYLsX25sY25X35Y354)
SI=SGRT((XZ=X1)%%2 + (Y2-Y1)%%2)
SEESCRTLIXZ-Xx]1)%%2 ¢ (Y3-Yi)%%2)
S3=SGUKT((x2=X2)%%2 ¢+ (Y3-Y2)%%2)
T=(Si+357+53)/2.¢C
AzSQETI(T={T-51)13(T=S2)1%(1-53))
RETURN
END
7/879 in column 1
Ce0 CoC 2aC 2.C C.C 2.C
C‘QO i‘o C-f} Z;C ‘1-[1-2
€el 20C Lol =4.¢ 3,2 7.3
€/7/8/5 in column 1

~ny
[}

Figure D-1. Sample Job Deck for Batch Mode Debugging

60484100 A

CYBek INTERACTIVE DFAUG
SETSHREAKPGINTSLL2 (
IN COLLECT MODE
X1=Ca03Y1=0.0
X2=22433Y220.C
X3=i.03;Y3==1.C
GOste3

]

ENG CRLLECT
SETsEREAKPOINT L4 [
IN CLULLECT MOCS
LISI» VALUES, PL.RD
QUIT

]

END CULLECT

GO

Xl=Cats

Yi=C(at

X2=2.03

Y2=$. 0

X3=1.0;

Y3=-1.0C

GOsLe3

LIST» VALUESsP.RD
PeRU

A = 1.0, X1 = 0.0» X2 = 24C» X3 = 1.0» Y1 = 0.0 Y2 = Ce0» Y3 = -1.0
QUII

Figure D-2. Listing of File DBUGOUT

60484100 A

SUMMARY OF CID COMMANDS E

e]

Table E-1 summarizes the CYBER Interactive Debug (CID) commands described in this guide, and specifies the page where
more detailed information can be obtained.

TABLE E-1. CID COMMAND SUMMARY

Short Described s s
Command Form on Page Description

assignment 3-20 The value of the expression on the right of the equal sign

(var=expr) replaces the current value of the variable on the left of the
equal sign.

CLEAR,AUXILIARY CAUX 3-28 Purges the auxiliary output file.

CLEAR,BREAKPOINT (] 3-7 Removes breakpoints.

CLEAR,GROUP CcG 4-4 Removes command group definitions.

CLEAR,QUTPUT couT 3-28 Turns off output to the terminal.

CLEAR, TRAP CcT 3-14 Removes traps.

DISPLAY D 3-19 Displays the contents of program locations.

EXECUTE EXEC 4-8 Resumes execution of the user program.

GO 4-8 Resumes execution of the user program or of a suspended command
sequence.

IF 4-10 Provides for conditional execution of CID commands.

JumMp 4-12 Causes a transfer of control within a command sequence.

LABEL 4-13 Designates a label to be used as the destination of a JUMP
command.

LIST,BREAKPOINT LB 3-7 Displays information about breakpoints defined for a debug
'session,

LIST,GROUP LG 4-4 Displays information about command groups defined for a
debug session.

LIST,MAP LM 3-25 Displays load map information.

LIST,STATUS LS 3-26 Displays information about the current status of the debug
session.

LIST,TRAP LT 3-14 Displays information about traps defined for a debug
session.

LIST,VALUES LV 3-17 Displays names and values of program variables.

MESSAGE 4-2 Displays a string of characters.

MOVE M 3-21 Moves data from one location to another.

PAUSE 4-8 Suspends execution of a command sequence.

60484100 A E-1

TABLE E-1. CID COMMAND SUMMARY (Contd)

Command égg;t gﬁsgggged Description
PRINT 3-18 Displays the contents of program variables.
QUIT 2-3 Terminates the debug session.

READ 4-4 Executes a group or file sequence or trap, breakpoint, and

group definitions saved on a file.

- SAVE,BREAKPOINT SAVEB 4-14 Writes breakpoint definitions to a file.

SAVE,GROUP SAVEG 4-14 Writes group definitions to a file.

SAVE, TRAP SAVET 4-14 Writes trap definitions to a file.

SET,AUXILIARY SAUX 3-28 Establishes an auxiliary output file.

SET,BREAKPOINT SB 3-6 Defines a breakpoint.

SET, HOME SH 3-2 Designates a home program.

SET,OUTPUT SOUT 3-27 Selects output types to be displayed at the terminal.
SET,GROUP SG 4-4 Defines a command group.

SET, INTERPRET, ON SI ON 3-15 Turns on interpret mode.

SET, INTERPRET, OFF SI OFF 3-15 Turns off interpret mode.

SET,TRAP,LINE STL 3-11 Defines a LINE trap.

SET,TRAP,OVERLAY ST OVL 5-2 Defines an OVERLAY trap.

SET,TRAP, STORE STS 3-12 Defines a STORE trap.

SUSPEND 4-15 Suspends the debug session.

TRACEBACK 3-4 Lists a subroutine call sequence.

E-2

60484100 A

INDEX

D ————=

ABORT trap 3-10

Arrays, displaying the contents of 3-17, 3-18
Assignment command 3-20

Automatic execution of CID commands 4-1
Auxiliary file 3-28

Batch mode CID features D-1

Bodies 4-1

Breakpoint
Establishing 2-3, 3-6
Listing 3-7
Location 3-6
Message 2-3
Number 2-3
Removing 3-7
Saving 4-14

Breakpoints defined 3-6

CLEAR,AUXILIARY command 3-28
CLEAR,BREAKPOINT command 3-7
CLEAR,GROUP command 4-4
CLEAR,OUTPUT command 3-28
CLEAR,TRAP command 3-14
Collect mode 4-1
Command
Format 2-2
Sequences 4-1
Shorthand notation 2-2, E-1
Summary E-1
Conditional execution of CID commands 4-10
CYBER Interactive Debug (CID)
Command summary E-1
Features 1-1

DEBUG control statement 2-1
Debug mode 2-1
Debug session
Description 2-4
Examples (see Sample debug sessions)
Suspending 4-15
Debug variables 3-3, 3-24
DEBUG(RESUME) 4-18
Default traps 3-10
DISPLAY command 3-18
Display commands 3-17

Editing a command sequence 4-15
END trap 3-10

Error processing 3-5, 4-5
EXECUTE command 4-8

FORTRAN CID features 1-1

GO command 2-3, 4-8
Group execution 4-4
Groups
Defined 4-4
Establishing 4-4
Listing 4-4
Removing 4-4
Saving 4-14

60484100 A

HELP command 2-4
Home program 3-1 -

IF command 4-10
Interactive input 3-30
Interactive mode 1-1
Interpret mode 3-15
INTERRUPT trap 3-11
Interrupts 3-11

JUMP command 4-12

LABEL command 4-12

Line number reference 2-2
LINE trap 3-11

LIST commands 3-24
LIST,BREAKPOINT command 3-7
LIST,GROUP command 4-4
LIST,MAP command 3-25
LIST,STATUS command 3-26
LIST,TRAP command 3-14
LIST,VALUES command 3-17
Load map 3-25

Local variables 3-1

MESSAGE command 4-2
MOVE command 3-21

Output control 3-26
Output types 3-27
Overflow errors C-1
Overlay programs 5-1
Overlay qualifier 5-2
OVERLAY trap 5-2

PAUSE command 4-8
PRINT command 2-3, 3-17
Program execution 2-1
Program reference 3-2
Program unit 3-1, 3-2
Programming style 1-1

Qualification Notation 3-2
QUIT command 2-3

READ command 4-15

Responses
To error messages 3-5, 4-5
To warning messages 3-5, 4-5

Sample debug sessions
Illustrating command sequences 4-20, 4-21
Illustrating program debugging 3-30, 3-36
Illustrating some basic commands 2-5

SAVE,BREAKPOINT command 4-14

SAVE,GROUP command 4-14

SAVE,TRAP command 4-14

Segment loader 1-2

Sequence commands 4-1

Sequence editing 4-15

Sequence execution 4-5

Sequence suspension 4-6

Sequences of commands 4-1

Index-1

SET,AUXILIARY command 3-28 Traps

SET,BREAKPOINT command 2-3, 3-6 Default 3-10
SET,GROUP command 4-4 Defined 3-9
SET,HOME command 3-2 Establishing 3-11
SET,INTERPRET command 3-15 Listing 3-14
SET,OUTPUT command 3-27 Removing 3-14
SET,TRAP command 3-11 Saving 4-14
Shorthand notation 2-2, E-1 User-established 3-11
Statement label reference 2-3
STORE trap 3-12 Use of breakpoints 3-6
SUSPEND command 4-15 Use of CID 1-1
Suspend/resume capability 4-15 Use of traps 3-9
Suspension of command sequence execution 4-8
Variables

TRACEBACK command 3-4 Altering contents of 3-20
Trap Debug 3-3, 3-24

Message 3-9 Displaying 3-17

Scope definition 3-11

Types 3-9 Warning processing 3-4

Index-2 60484100 A

INNTIROW 1nD

COMMENT SHEET

MANUAL TITLE: CYBER Interactive Debug Version 1 Guide for
Users of FORTRAN Version 5
PUBLICATION NO.: 60484100
REVISION: C
This form is not intended to be used as an order blank. Control Data Corporation

welcomes your evaluation of this manual. Please indicate any errors, suggested

additions or deletions, or general comments on the back (please include page number
references).

Please reply- No reply necessary

FOLD FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

]
BUSINESS REPLY MAIL ———
FIRST CLASS . PERMIT NO. 8241 MINNEAPOLIS, MINN. []
|
POSTAGE WILL BE PAID BY I
CONTROL DATA CORPORATION .
. L

Publications and Graphics Division
L]
P.0. BOX 3492 —
Sunnyvale, California 94088-3492 —
I
S
N

FOLD _ FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY :
STREET ADDRESS:

-CITY/STATE/ZIP:

TAPE TAP

=

CORPORATE HEADQUARTERS, P.O. BOX 0. MINNEAPOLIS, MINN. 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	Index-01
	Index-02
	replyA
	xBack

